Lecture 10 Central Limit Theorem

Chao Song

College of Ecology Lanzhou University

October 14, 2024

Central limit theorem

From the previous lecture, we know that if X_1, X_2, \ldots, X_n are a random sample from a normal distribution $\mathcal{N}(\mu,\sigma^2),$ then the sample mean

$$
\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \quad \text{or} \quad \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)
$$

Central Limit Theorem: If \overline{X} is the mean of a random sample X_1, X_2, \ldots, X_n of size n from a distribution with a finite mean μ and a finite positive variance σ^2 , then the distribution of

$$
W = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma}
$$

is $N(0, 1)$ in the limit as $n \to \infty$

Proof of central limit theorem

If a sequence of MGFs approaches a certain MGF, say *M*(*t*), for *t* in an open interval around 0, then the limit of the corresponding distributions must be the distribution corresponding to *M*(*t*).

We first consider the MGF of *W*,

$$
m_W(t) = E(e^{tW}) = E\left[\exp\left(t\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma}\right)\right]
$$

=
$$
E\left[\exp\left[\left(\frac{t}{\sqrt{n}}\right)\left(\frac{X_1 - \mu}{\sigma}\right)\right] \cdots \exp\left[\left(\frac{t}{\sqrt{n}}\right)\left(\frac{X_n - \mu}{\sigma}\right)\right]\right]
$$

=
$$
E\left[\exp\left[\left(\frac{t}{\sqrt{n}}\right)\left(\frac{X_1 - \mu}{\sigma}\right)\right]\right] \cdots E\left[\exp\left[\left(\frac{t}{\sqrt{n}}\right)\left(\frac{X_n - \mu}{\sigma}\right)\right]\right]
$$

which follows from the independence of X_1, X_2, \ldots, X_n . Then

$$
E(e^{tW})=\left[m\left(\frac{t}{\sqrt{n}}\right)\right]^n
$$

where $m(t)$ is the common MGF of each $Y_i = (X_i - \mu)/\sigma$.

Proof of central limit theorem

We know $E(Y_i) = 0$ and $E(Y_i^2) = 1$, thus,

$$
m(0) = 1
$$
, $m'(0) = 0$, $m''(0) = 1$

Hence, using Taylor's formula with a remainder, we know that there exist a number *t*¹ between 0 and *t* such that

$$
m(t) = m(0) + m'(0)t + \frac{m''(t_1)t^2}{2} = 1 + \frac{m''(t_1)t^2}{2}
$$

Using this expression of MGF, we have

$$
m_W(t) = \left[m\left(\frac{t}{\sqrt{n}}\right)\right]^n = \left(1 + \frac{m''(t_1)t^2}{2n}\right)^n
$$

where t_1 is between 0 and t/\sqrt{n} . Here, we see that $t_1 \rightarrow 0$ and $m''(t_1) \rightarrow 1$ as $n \to \infty$.

Proof of central limit theorem

Thus, we obtain the MGF of *W* as $n \to \infty$

$$
\lim_{n\to\infty}m_W(t)=\lim_{n\to\infty}\left(1+\frac{m''(t_1)t^2}{2n}\right)^n=e^{\frac{t^2}{2}}
$$

Here, $e^{t^2/2}$ is the MGF of a standard normal distribution. It follows that the limiting distribution of

$$
W = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}
$$

is a standard normal distribution, i.e., *N*(0, 1).

From central limit theorem, we see that the distribution of any random variable that is the sum of independent and identically distributed random variables can be approximated by a normal distribution.

Recall that a binomial random variables can be described as the sum of Bernoulli distributions. If *Y* has a binomial distribution, central limit theorem states that the distribution of

$$
W=\frac{Y-np}{\sqrt{np(1-p)}}
$$

is $N(0, 1)$ in the limit as $n \to \infty$. Thus, if *n* is "sufficiently large", the distribution of *Y* is approximately $N[np, np(1-p)]$

If *n* is "sufficiently large", the distribution of *Y* is approximately $N(np, np(1-p))$. A rule often stated is that *n* is sufficiently large if $np \geq 5$ and $n(1 - p) \ge 5$.

A random variable *Y* having a Poisson distribution with mean λ can be thought of as the sum of λ Poisson distributed random variables with mean 1. Thus,

$$
W=\frac{Y-\lambda}{\lambda}
$$

has a distribution that is approximately *N*(0, 1), and the distribution of *Y* is approximately $N(\lambda, \lambda)$.

The normal approximation for a Poisson distribution is "good" when $\lambda \geq 20$.

For a discrete distribution, $P(Y = k)$ can be represented by the are of the rectangle with a height of $P(Y = k)$ and a base of length 1 centered at *k*. When approximating the probability using a normal distribution, we use the area under the PDF of a normal distribution between $k-\frac{1}{2}$ and $k+\frac{1}{2}$. This is often referred to as the **half-unit correction for continuity**.

$$
P(Y \le k) \approx \Phi(\frac{k + 1/2 - \mu}{\sigma})
$$

$$
P(Y < k) \approx \Phi(\frac{k - 1/2 - \mu}{\sigma})
$$

Example: Let *Y* have a binomial distribution with $n = 10$ and $p = 0.5$. Using normal approximation to find $P(3 \leq Y < 6)$.

The mean and variance of *Y* is 10 \times 0.5 = 5 and 10 \times 0.5 \times (1 – 0.5) = 2.5.

$$
P(3 \leq Y < 6) = P(2.5 \leq Y \leq 5.5)
$$
\n
$$
= P\left(\frac{2.5 - 5}{\sqrt{2.5}} \leq \frac{Y - 5}{\sqrt{2.5}} \leq \frac{5.5 - 5}{\sqrt{2.5}}\right)
$$
\n
$$
= \Phi(0.316) - \Phi(-1.581)
$$
\n
$$
= 0.5672
$$

We can also calculate the probability based on binomial distribution:

$$
P(3 \leq Y < 6) = P(Y = 3) + P(Y = 4) + P(Y = 5)
$$
\n
$$
= 0.1172 + 0.2051 + 0.2461
$$
\n
$$
= 0.5683
$$