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Central limit theorem

From the previous lecture, we know that if X1,X2, . . . ,Xn are a random

sample from a normal distribution N(µ, σ2), then the sample mean

X ∼ N(µ,
σ2

n
) or

X − µ

σ/
√

n
∼ N(0, 1)

Central Limit Theorem: If X is the mean of a random sample X1,X2, . . . ,Xn

of size n from a distribution with a finite mean µ and a finite positive variance

σ2, then the distribution of

W =
X − µ

σ/
√

n
=

∑n
i=1 Xi − nµ
√

nσ

is N(0, 1) in the limit as n → ∞



Proof of central limit theorem

If a sequence of MGFs approaches a certain MGF, say M(t), for t in an open

interval around 0, then the limit of the corresponding distributions must be the

distribution corresponding to M(t).

We first consider the MGF of W ,

mW (t) = E(etW ) = E
[
exp

(
t
(
∑n

i=1 Xi − nµ)
√

nσ

)]
= E

[
exp

[( t√
n

)(X1 − µ

σ

)]
· · · exp

[( t√
n

)(Xn − µ

σ

)]]
= E

[
exp

[( t√
n

)(X1 − µ

σ

)]]
· · ·E

[
exp

[( t√
n

)(Xn − µ

σ

)]]
which follows from the independence of X1,X2, . . . ,Xn. Then

E(etW ) =

[
m
( t√

n

)]n

where m(t) is the common MGF of each Yi = (Xi − µ)/σ.



Proof of central limit theorem

We know E(Yi) = 0 and E(Y 2
i ) = 1, thus,

m(0) = 1, m′(0) = 0, m′′(0) = 1

Hence, using Taylor’s formula with a remainder, we know that there exist a

number t1 between 0 and t such that

m(t) = m(0) + m′(0)t +
m′′(t1)t2

2
= 1 +

m′′(t1)t2

2

Using this expression of MGF, we have

mW (t) =
[
m
( t√

n

)]n

=

(
1 +

m′′(t1)t2

2n

)n

where t1 is between 0 and t/
√

n. Here, we see that t1 → 0 and m′′(t1) → 1

as n → ∞.



Proof of central limit theorem

Thus, we obtain the MGF of W as n → ∞

lim
n→∞

mW (t) = lim
n→∞

(
1 +

m′′(t1)t2

2n

)n

= e
t2
2

Here, et2/2 is the MGF of a standard normal distribution. It follows that the

limiting distribution of

W =
X − µ

σ/
√

n

is a standard normal distribution, i.e., N(0, 1).



Approximation for discrete distributions

From central limit theorem, we see that the distribution of any random

variable that is the sum of independent and identically distributed random

variables can be approximated by a normal distribution.

Recall that a binomial random variables can be described as the sum of

Bernoulli distributions. If Y has a binomial distribution, central limit theorem

states that the distribution of

W =
Y − np√
np(1 − p)

is N(0, 1) in the limit as n → ∞. Thus, if n is “sufficiently large”, the

distribution of Y is approximately N
[
np, np(1 − p)

]



Approximation for discrete distributions

If n is “sufficiently large”, the distribution of Y is approximately

N
(
np, np(1 − p)

)
. A rule often stated is that n is sufficiently large if np ⩾ 5

and n(1 − p) ⩾ 5.



Approximation for discrete distributions

A random variable Y having a Poisson distribution with mean λ can be

thought of as the sum of λ Poisson distributed random variables with mean 1.

Thus,

W =
Y − λ

λ

has a distribution that is approximately N(0, 1), and the distribution of Y is

approximately N(λ, λ).



Approximation for discrete distributions

The normal approximation for a Poisson distribution is “good” when λ ⩾ 20.



Approximation for discrete distributions

For a discrete distribution, P(Y = k) can be represented by the are of the

rectangle with a height of P(Y = k) and a base of length 1 centered at k .

When approximating the probability using a normal distribution, we use the

area under the PDF of a normal distribution between k − 1
2 and k + 1

2 . This is

often referred to as the half-unit correction for continuity.

P(Y ⩽ k) ≈ Φ(
k + 1/2 − µ

σ
)

P(Y < k) ≈ Φ(
k − 1/2 − µ

σ
)



Approximation for discrete distributions

Example: Let Y have a binomial distribution with n = 10 and p = 0.5. Using

normal approximation to find P(3 ⩽ Y < 6).

The mean and variance of Y is 10 × 0.5 = 5 and 10 × 0.5 × (1 − 0.5) = 2.5.

P(3 ⩽ Y < 6) = P(2.5 ⩽ Y ⩽ 5.5)

= P(
2.5 − 5√

2.5
⩽

Y − 5√
2.5

⩽
5.5 − 5√

2.5
)

= Φ(0.316)− Φ(−1.581)

= 0.5672

We can also calculate the probability based on binomial distribution:

P(3 ⩽ Y < 6) = P(Y = 3) + P(Y = 4) + P(Y = 5)

= 0.1172 + 0.2051 + 0.2461

= 0.5683


