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Evaluating estimators

We want an estimator to be “close” to the true value of the parameter it tries

to estimate. The “closeness” can be evaluated in multiple ways:

• Bias: how far away is the estimator from the true value on average?

• Efficiency: how much uncertainty do we have in the estimator?

• Consistency: does the estimator become closer to the true value as

sample size increases?

• Sufficiency: has the estimator used all available information from the

sample to estimator the parameter of interest?



Bias

Definition: An estimator u(X1,X2, . . . ,Xn) is an unbiased estimator of a

parameter θ if E [u(X1,X2, . . . ,Xn)] = θ. Otherwise, it is a biased estimator.

Example: Let X be a random variable with mean µ and variance σ2 and

X1,X2, . . . ,Xn be a random sample. The sample mean and variance

X =
1
n

n∑
i=1

Xi and s2 =
1

n − 1

n∑
i=1

(Xi − X )2

are unbiased estimators of µ and σ2

Proof:

E(X ) = E(
1
n

n∑
i=1

Xi) =
1
n

n∑
i=1

E(Xi)

=
1
n

nµ = µ



Bias

E(s2) = E
[ 1

n − 1

n∑
i=1

(Xi − X )2
]
=

1
n − 1

E
[ n∑

i=1

(X 2
i − 2XiX + X

2
)
]

=
1

n − 1

[
E(

n∑
i=1

X 2
i )− 2E(

n∑
i=1

XiX ) + E(
n∑

i=1

X
2
)
]

=
1

n − 1

[
nE(X 2

i )− 2nE(X
2
) + nE(X

2
)
]
=

1
n − 1

[
nE(X 2

i )− nE(X
2
)
]

=
1

n − 1

[
n(σ2 + µ2)− n(

σ2

n
+ µ2)

]
= σ2

using the fact that Var(X ) = E(X 2)− [E(x)]2. Hence, sample mean and

variance are unbiased estimator of µ and σ2.



Consistency

A sequence X1,X2, . . . ,Xn of random variables converges in probability

towards the random variable X if for ε > 0

lim
n→∞

P(|Xn − X | > ε) = 0

A sequence X1,X2, . . . ,Xn of random variables converges almost surely or

converge with probability 1 to a random variable X if

P( lim
n→∞

Xn = X ) = 1

As sample size n → ∞, if an estimator θ̂ converges to θ in probability, θ̂ is a

consistent estimator. If θ̂ converges to θ in probability 1, then θ̂ is a strongly

consistent estimator.



Bias and consistency

Bias and consistency describe different aspects of an estimator and are not

equivalent concepts. An estimator can be unbiased but inconsistent, or

biased but consistent. However, if an estimator is unbiased and it converges

to a value as n → ∞, then it must be an consistent estimator and converges

to the true value of the parameter.

Unbiased but inconsistent: For a random sample X1,X2, . . . ,Xn, X1 is an

unbiased estimator of the population mean µ because E(X1) = µ, but it is

clear that the property of X1 as an estimator does not change with sample

size n and it is not a consistent estimator.

Biased but consistent: The maximum likelihood estimate of population

variance σ2, σ̂2 =
∑n

i=1(Xi − X )2 is an biased estimator of σ2, but it is a

consistent estimator.



Efficiency

Definition: The mean square error (MSE) of an estimator u(X ) of a

parameter θ is the function of θ defined as E(u(X )− θ)2.

Mean square error can be decomposed into two components as

E(u(X )− θ)2 = Var [u(X )] + (E [u(X )]− θ)2

For an unbiased estimator, i.e., E [u(X )] = θ, the mean square error is equal

to the variance of the estimator.



Sufficiency

Definition: A statistic u(X ) is a sufficient statistic for θ if the conditional

distribution of the sample X1,X2, . . . ,Xn given the value of u(X ) does not

depend on θ.

Fisher-Neyman Factorization Theorem: Let X1,X2, . . . ,Xn denote random

variables with joint PDF or PMF f (X1,X2, . . . ,Xn|θ), which depends on the

parameter θ. The statistic Y = u(X1,X2, . . . ,Xn) is a sufficient statistic for θ if

and only if

f (X1,X2, . . . ,Xn|θ) = ϕ(u(X1,X2, . . . ,Xn)|θ)h(X1,X2, . . . ,Xn)

where ϕ depends on X1,X2, . . . ,Xn only through u(X1,X2, . . . ,Xn) and

h(X1,X2, . . . ,Xn) does not depend θ.



Sufficiency

Theorem: Let X1,X2, . . . ,Xn be a random sample from a distribution with

PDF or PMF f (x |θ). Let Y1 = u1(X1,X2, . . . ,Xn) be a sufficient statistic for θ,

and let Y2 = u2(X1,X2, . . . ,Xn) be an unbiased estimator of θ, where Y2 is

not a function of Y1 alone. Then E(Y2|Y1) defines a statistic u(Y1), a function

of the sufficient statistic Y1, which is an unbiased estimator of θ, and its

variance is less than that of Y2.

The important implication is that for every other unbiased estimator of θ, we

can always find an unbiased estimator based on the sufficient statistic that

has a variance at least as small as the first unbiased estimator. Hence, we

might as well search for an unbiased estimator by considering only those

unbiased estimators based on sufficient statistics.



Asymptotic properties of maximum likelihood estimator

Maximum likelihood estimators is widely used because it has many desirable

properties. Under regular conditions, maximum likelihood estimator is,

• asymptotically consistent;

• approximately normally distributed;

• asymptotically efficient;

• is sufficient for a large family of distributions

In the following slides, rough sketch proof of these properties of the maximum

likelihood estimator is provided. These contents are much more advanced

than necessary for an introductory course like this. Therefore, these

materials are optional.



Consistency of maximum likelihood estimator

Law of large numbers: If the distribution of the i.i.d. sample X1,X2, . . . ,Xn is

such that Xi has finite expectation, i.e., |E(X )| < ∞, then the sample average

X =
X1 + X2 + . . .+ Xn

n
→ E(X )

converges to its expectation in probability.

Using law of large numbers, the likelihood function normalized by 1/n

1
n
ln
[
L(θ)

]
=

1
n

n∑
i=1

ln
[
f (Xi |θ)

]
→ E

[
ln f (Xi |θ)

]
in probability. We also know that the maximum likelihood estimator θ̂

maximizes ln
[
L(θ)

]
and thus 1

n ln
[
L(θ)

]
. Since 1

n ln
[
L(θ)

]
converges to

E
[
ln f (Xi |θ)

]
, θ̂ should also converge to the value that maximizes

E
[
ln f (Xi |θ)

]
.



Consistency of maximum likelihood estimator

What value maximizes E
[
ln f (Xi |θ)

]
?

Let θ0 be the true value of θ and θ1 be any other estimates of θ.

E
[
ln f (Xi |θ1)

]
− E

[
ln f (Xi |θ0)

]
= E

[
ln

f (Xi |θ1)

f (Xi |θ0)

]
Because ln(x) is a concave function,

E
[
ln

f (Xi |θ1)

f (Xi |θ0)

]
< ln

[
E
(

f (Xi |θ1)

f (Xi |θ0)

)]
= ln

(∫ ∞

−∞

f (Xi |θ1)

f (Xi |θ0)
f (Xi |θ0)dx

)
= ln

(∫ ∞

−∞
f (Xi |θ1)dx

)
= ln(1) = 0.

Thus, θ0 maximizes E
[
ln f (Xi |θ)

]
. Therefore, we conclude that θ̂ converges

to θ0 and is thus a consistent estimator.



Normality of maximum likelihood estimator

The maximum likelihood estimator θ̂ for a parameter θ has asymptotic normal

distribution. To prove this, we first note that we obtain θ̂ by setting the

derivatives of the log likelihood function to 0, i.e.,

∂[ln L(θ̂)]
∂θ

= 0

Approximating the left hand side of the equation using the first two terms in

the Taylor expansion, we have

∂[ln L(θ)]
∂θ

+ (θ − θ̂)
∂2[ln L(θ)]

∂θ2 ≈ 0

Rearranging the equation, we obtain

θ̂ − θ =
∂[ln L(θ)]

∂θ

− ∂2[ln L(θ)]
∂θ2



Normality of maximum likelihood estimator

We first consider the numerator. Recall that

ln L(θ) = ln f (X1|θ) + ln f (X2|θ) + · · ·+ ln f (Xn|θ)

and thus
∂ ln L(θ)

∂θ
=

n∑
i=1

∂[ln f (Xi |θ)]
∂θ

This is the sum of n independent and identically distributed random variables

and thus, by central limit theorem, has an approximate normal distribution.

The mean of the distribution is

n
∫ ∞

−∞

∂[ln f (Xi |θ)]
∂θ

f (Xi |θ)dx = n
∫ ∞

−∞

∂[f (Xi |θ)]
∂θ

f (Xi |θ)
f (Xi |θ)

dx

= n
∫ ∞

−∞

∂[f (Xi |θ)]
∂θ

dx = n
∂

∂θ

[ ∫ ∞

−∞
f (Xi |θ)

]
= n

∂(1)
∂θ

= 0.



Normality of maximum likelihood estimator

We can consider the variance of the distribution. We just show that∫ ∞

−∞

∂[ln f (Xi |θ)]
∂θ

f (Xi |θ)dx = 0

Take derivative with respect to θ, we have∫ ∞

−∞

{
∂2[ln f (Xi |θ)]

∂θ2 f (Xi |θ) +
∂[ln f (Xi |θ)]

∂θ

∂[f (Xi |θ)]
∂θ

}
dx = 0

Note that
∂[f (X |θ)]

∂θ
=

∂[ln f (X |θ)]
∂θ

f (X |θ)

Using this in the equation above, we have∫ ∞

−∞

{
∂[ln f (X |θ)]

∂θ

}2

f (X |θ)dx = −
∫ ∞

−∞

∂2[ln f (X |θ)]
∂θ2 f (X |θ)dx



Normality of maximum likelihood estimator

Because E
( ∂ ln f (X |θ)

∂θ

)
= 0, this last expression provides the variance of

∂ ln f (X |θ)
∂θ

. Thus,

Var(
∂ ln L(θ)

∂θ
) = Var(

n∑
i=1

∂ ln f (X |θ)
∂θ

) = nVar(
∂ ln f (X |θ)

∂θ
)

= −nE
[
∂2 ln f (X |θ)

∂θ2

]
This is commonly denoted as I(θ) and is referred to as the Fisher information

for the sample. Thus far, we have shown that the numerator in the expression

of θ̂ − θ has a normal distribution with mean 0 and variance I(θ). We now

consider the denominator.



Normality of maximum likelihood estimator

The denominator is also the sum of independent and identically distributed

random variables

−∂2 ln L(θ)
∂θ2 =

n∑
i=1

−∂2 ln f (X |θ)
∂θ2

Based on law of large numbers, as sample size n increases,

−∂2 ln L(θ)
∂θ2 → nE

(
∂2f (X |θ)

∂θ2

)
= I(θ).

Thus, we have shown that asymptotically,

∂ ln L(θ)
∂θ

∼ N(0, I(θ))

− ∂2 ln L(θ)
∂θ2 → I(θ)



Normality of maximum likelihood estimator

We therefore have, asymptotically,

Var(θ̂ − θ) = Var
( ∂ ln L(θ)

∂θ

− ∂2 ln L(θ)
∂θ2

)
= Var

( ∂ ln L(θ)
∂θ

I(θ)

)

=
1

I(θ)2 Var(
∂ ln L(θ)

∂θ
) =

1
I(θ)

We therefore can see, at least roughly, that (θ̂− θ) ∼ N(0, I(θ)−1). That is, for

any maximum likelihood estimator θ̂, we have asymptotically

θ̂ ∼ N(θ, I(θ)−1)



Efficiency of maximum likelihood estimator

Cramer–Rao lower bound: Suppose X1,X2, . . . ,Xn is a random sample

from a population with density function f (x |θ). Let Y = u(X1,X2, . . . ,Xn) be

an unbiased estimator of θ. Then

Var(Y ) ⩾
1

I(θ)

where I(θ) is the Fisher information of the sample and is defined as

I(θ) = E
[(∂ ln L(θ)

∂θ

)2
]
= −E

(
∂2 ln L(θ)

∂θ2

)
= −nE

(
∂2 ln f (x |θ)

∂θ2

)

Because the maximum likelihood estimator has asymptotic variance of

I(θ)−1. The Cramer–Rao lower bound suggests that maximum likelihood

estimator has the minimum variance that an unbiased estimator can achieve.

Thus, maximum likelihood estimator is asymptotically efficient.


