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Model and statistical inference

In all previous discussions on statistical inference, we assumed that the
observable random variables Yi, Y, ..., Y, were independent and identically
distributed. One implication of this assumption is that the expected value of
E(Y;) is constant.

In many inferential problems, such an assumption is unrealistic.
e Stopping distance of automobile will depend on the speed of the vehicle;
® Potency of an antibiotic depends on the time it has been stored;

® Elongation observed in a metal alloy depends on the force applied and
the temperature.

In these cases, we are usually interested in undertaking a inferential
procedure that can be used when a random variable Y, called the
dependent variable, has a mean that is a function of one or more
nonrandom variables Xi, Xz, ..., Xk, called the independent variables.



Deterministic and probabilistic model

A deterministic model is when the dependent variable can be predicted from
the independent variables without any uncertainty.

Example: Fick’s law of diffusion postulates that the flux rate of a gas across
concentration gradient is described as

J = D¢

where J is the flux rate, D is diffusion coefficient, and ¢ is concentration
gradient.

This is a deterministic model because it does not allow any uncertainty/error
in predicting Y. This model implies that Y always takes the same value D¢y
whenever ¢ = ¢o.



Deterministic and probabilistic model

While deterministic models are common in physics and mathematics, it is
rarely applicable in ecology.

¢ Contexts that influence the dependent variable may vary;
® We usually cannot measure things without error.

Often, we encounter data that are noisy. The average of Y seems to change
with X but a deterministic relationship cannot exactly fit the data.
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Deterministic and probabilistic model
In these scenarios, statisticians use probabilistic models. For example, we
may represent the data in the previous figure by the model
E(Y)=080+ 55X
Each observation deviates from the mean by an unknown random error
Yi=Bo+ 81X +ei

where ¢ is a unknown random error. We often further assume that it possess
a specified probability distribution with mean 0.



Deterministic and probabilistic model

In the model Y = By + 81X + &, we assume that there is a population of
possible values of Y for a particular value of X. The distribution has a mean
that is predicted by the deterministic part of the model, i.e., 5o + 51 X. The
observation deviates from the mean by the random component ¢.
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Linear models

Definition: A linear model relating a random response Y to a set of
independent variables Xi, Xz, . . ., X is of the form

Y=00+0B1Xi 4+ +BXc + ¢

where So, 1, . .., Bk are unknown parameters, ¢ is a random variable and the
variables Xi, Xz, ..., Xk assume known value. We will assume E(¢) = 0 and
hence that

E(Y) = Bo+ B1 X1+ -+ B Xk

The term “linear” means that the mean of dependent variable E(Y) is a linear
function of the unknown parameters o, 51, - - . , Bk. It is not necessarily a
linear function of X. For example, Y = o + 81X + B2X2 or Y = o + B1 In(X)
are also a linear model.



Linear model

If the model is of the form Y = 3y + 31X, where X is a continuous variable,
the model is a simple linear regression. If the model contains multiple
continuous independent variables, the model is called multiple linear
regression. Below is an example of multiple linear regression:

2 2
y E(Y) = By + B1X1 + BaXy + B3x1Xp + BaX] + Bsxa
— 1~
~L| ~o ] x
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The method of least square

How do we estimate parameter in a linear model?

Intuitively, we want to fit a line through the data and we want the difference
between the observed values and the corresponding points on the fitted line
to be “small” in some overall sense.
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The method of least square

A convenient way to accomplish this, and one that yields estimators with
good properties, is to minimize the sum of squares of the vertical deviations
from the fitted line. This method is called the method of least squares.
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Graphic illustration of the method of least squares



Method of least squares

In a simple linear regression Y = By + 81X, let fo and 5 be the estimates of
model parameters, and ; = o + 51X denotes the predicted value of y; based
on the regression. The sum of squares of deviations to be minimized is

n
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To obtain parameter estimates that minimize SSE, take partial derivatives

and set them to zero.
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Method of least squares
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The solution to the least square equations are

Y =X)i—y) _ Sy
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Properties of least square estimators

The least square estimator Bo and B; are unbiased.

Proof: Recall the least square estimator for 3y is

_ XL =X) i —Y)

By
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Properties of least square estimator
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Properties of least square estimator

We now find the expected value of ;. Recall the least square estimator
Bo =y — 51X, therefore
E(Bo) = E(y — BiX)
= E(y) - E(B1)x
= fo + B1X — BiX
= fo

We thus have proven that the least square estimator 3, and 3; are unbiased
estimator of Sy and 34 respectively.



Properties of least square estimators

What are the variances of the least square estimators 3, and 31 ?

Var(f1) = Var {7223’% (();_ i?)};’}




Properties of least square estimators

The variance of 3 is

Var(fBo) = Var(y — i)
= Var(y) + x*Var(B31) — 2Cov(¥, 1 X)
= Var(y) + x*Var(B1) — 2xCov(y, 1)

We thus must find Var(y) and Cov(y, 31). Here,

n 2
Var(y Var( Zy, = Z Var(y;) = %
i=1

. n —
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Therefore, we have
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Properties of least square estimators

Note that the least square estimators Bo and B, are not independent.

COV(B1 ) /BAO) = COV(B‘] 7? - 517)
= COV(B1 Y) — YVar(ﬁ )

n
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Thus, B and j, are negatively correlated unless X = 0.



Method of least squares

There is a remaining parameter o2, we typically estimate it by

2 SSE
n2 -2

This is an unbiased estimator because
n
E(SSE) = E[Z(y,. — o — B x,)ﬂ
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Method of least squares

Note here that
D =X —¥) =D (% —X)*Bs
Di-y=> vty

Plug these two equations in E(SSE), we have

E(SSE) = {Z Y= ny? + B7Su — 25 sxx}

=Y E(?) — nE(?) — SwE(B2)

Here, each component can be calculated as

E(y?) = Var(y)) + [EW))® = 0° + (Bo + Bix)?

E) = Var() + EG)F = % + o )

E(B?) = Var(By) + [E(B)F = o +ﬂ1



Method of least squares

We therefore have

E(SSE) = no® +> (8o + B1X;)° — 0® — n(Bo + B1X)? — 0% — S

n—2)0" + >y —ny = > (i~ X8
n—2)0" + 3 (-7 = 30 — %P6
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Therefore, SSE/(n — 2) provides a unbiased estimator for o2.



Properties of least square estimators

We have derived the following properties of the least square estimators:

* The least square estimators 3 and 31 are unbiased;

Var(fBo) = cooo?, where coo = 3 X2/NSx;

Var(B1) = ci10?, where ¢y = 1/Sx;

Cov(fo, 1) = co10?, where o1 — X/ S

s? = SSE/(n — 2) is an unbiased estimator for o2.

All these properties are derived based on the assumption that we have a
linear model y; = Bo + B1X; + i, where E(g;) = 0 and are independent.
These properties do not require any distributional assumption about ;.



Properties of least square estimators

If we further assume that &; ~ N(0, 02), then y; ~ N(Bo + B1x;,02). Note that
both Bo. and 3 are linear combinations of y;:

31 _ 27:1()(/ -X)yi—-y) Z, 1 (xi _X)
S (xi = X)? E/ 1(xi —X)? Y
fo =Y — Bix

Recall that any linear combination of normal distributed random variables still
have a normal distribution. Therefore, if ¢ is normal, the least square
estimators are both normally distributed.



Properties of least estimators

Without explicitly proving them, we state the following properties of least
square estimators in a simple linear regression.
If the error ¢ has a normal distribution, we have

* Both 3, and j3; are normally distributed;

* The random variable (n — 2)s?/0? has x?(n — 2);

e The statistic s> = SSE/(n — 2) is independent of both 3 and .



Inferences concerning the parameters ;

In a linear regression, if the random error ¢ is normally distributed, we have
established that j; is an unbiased, normally distributed estimator of 3; with

n 2
AN 2 i X
Var(5o) = cooo”, Coo = 5.
~ 1
Vaf(ﬂ1)=C110'2, Ciq Zsf
For each 3, we thus have
Bi—Bi N(0, 1)

Cjio
We have also shown s? = SSE/(n — 2) is independent of 3; and that

(n—2)s?

2 ~ X2(n72)
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Inferences concerning the parameters ;

This allows us to construct a test statistics for Ho: 8; = Bio:

2
T ﬂ,o/\/ (n— 23 (n—2)
Cjio

_ Bi — Bio

CiiS

~tn—2)

This result also suggests that we can construct 100(1 — a)% confidence
interval for 3; as:

Bi £ taj2(n—2)sv/ci



Inferences concerning the parameters ;

Recall the definition of t-distribution:

Z
T=—=n~1tk
v~ k)
where Z ~ N(0,1) and V ~ x?(k) and are independent. F-distribution is
defined as
_ Vi/d

~ Voja, " o

where V4 and V» are independent 2 variables with degrees of freedom d}
and d», respectively.

We thus can see that T2 has a F-distribution with df 1 and k. A hypothesis
test based on t-distribution can be equivalently done with a corresponding
F-distribution.



Inferences concerning the parameters ;

The t-test for each §; can also be done based on F-distribution as

B.—B:n)2
(/Blcuféo) /1 SSH/1 F
= ~ F1,n-2
(n— 2)52/(n 2) SSE/(n-2) "
Here, we refer to (Zi=Fi) ’° as SSH and (n — 2)s? as SSE. The F test statistic

is constructed from the so called “sum of squares”. This is an important
concept in hypothesis testing in linear models.

While t-test can be used to test hypothesis concerning a single parameter,
F-test constructed from various “sum of squares” provides a general way of
hypothesis testing in linear models.



Inferences concerning linear functions of parameters

In addition to making inference about a single 3;, we frequently are interested
in linear functions of model parameters. For example, we may wish to make
inference about

0 = apBo + ai B4

We use § = apf3 + a1 41 as an unbiased estimator of 6 because
E(f) = E(aofo + a1p1) = aE(Bo) + a1 E(B1) = aofo + aipr = 0

Because f; are all normally distributed, § as a linear function of j; also has a
normal distribution. Its variance is

Var(@) = Val’(ao,BAo + ai 31)
a Var(fo) + & Var(B1) + 2aoa Cov(fo, 51)

2
Xv _
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Inferences concerning linear functions of parameters

We have shown that § ~ N(6, coo?). Thus

0 — 6,
Voo

In linear regression, we also have

~ N(0,1)

(n—2)s?

a7 ~x(n-2)

ag
Using the results above, we derive a t statistic for testing Ho: 6 = 6y as

d—6q

T Yo 0= % _tn-2)

02E (n_g) VO

A 100(1 — )% confidence interval for ¢ is thus

6+ t%(n— 2)s\/co



Inference about predicted mean

An important application of making inference about linear functions of model
parameters is to predict the mean of response variable at a new value of
independent variable. Suppose we have already fitted a linear model. We
want make inference about the mean of Y at x = x™,

We estimate the mean of Y at x* by E(Y*) = 3 + B1x*. Note here By + 31 x*
is a linear function of model parameters 5, and 3; where a, = 1 and a; = x*.
Thus, using results from previous slides:

(Bo + Bix*) — E(Y™)

Ce(v)oO

~ a/g(n — 2)

where

2
24 x? _2x*%

c =
E(Y) S




Inference about predicted mean

Note that cg(yy can be further simplified as

2
B ZX’ + x*2 2x*77¥+x*2—2x’7+iz—?2
Em = Sue - Sue

ZXZ—"X *2 *y | w2 Sxx * )2
T X -2XTX + X 22 4 (X —X)
o SXX - SXX

1 x* —X)?
1, -

n Xyx

A 100(1 — a)%Confidence interval for E(Y*) = 8o + S1x™ is

1 X* —X)2
=%

(Bo + ix™) £ tg (n—2)sy/ 5



Inference about predicted mean

On the width of the confidence interval for E(Y):
® The width is the narrowest at x = X;

® The width decreases with Sy, suggesting that spreading x out helps
improve the precision of predicting the mean.
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Inference about predicted value of Y

In addition to making inferences about the mean of Y at x*, can we make
prediction about the value Y at x*, namely Y*?

Notice that Y”* is a random variable, not a parameter; predicting its value
therefore represents a departure from previous objective of making
inferences about model parameters.

In a linear model assuming normal error, Y™ is normally distributed with
mean S + B1x*. It is thus reasonable to use B, + B1x* as a predictor of Y™.



Inference about predicted value of Y

Let e* be the error of the prediction, i.e., e* = Y* — (5o + B1x*). Because Y*,
Bo and Sy are all normally distributed, ™ is also normally distributed. Here,
E(e") = E[Y* — (Bo + B1x™)]
= E(Y") — E(fo) — E(B)x"
=Bo+ X" —Po—P1x" =0
Var(e*) = Var[Y* — (Bo + B1x™)]
Var(Y*) + Var(Bo + Bix*)

2 (1, (X =X?\ »
U+(n+ 5o o

(1 + 15 G _7)2>02

SXX

Note that Y* is a future prediction that is not employed in estimating 3, and
Bi. Thus, Y* is independent of By + B1x*.



Inference about predicted value of Y

We thus has shown that

Y* — (Bo+Bix*) ~ N

* -\2
o.(1+1 +(>”
n Sxx

Using the same technique as deriving the t-test for a single parameter or
linear functions of parameters, we have

Y'— (Bo+Bix7)

sy/1+ 1+ 0

A 100(1 — )% prediction band for Y~ is thus

t(n—2)

o A Lk i * _ w)2
Bo + pix ﬂ:l‘%(n—Z)s\/1 +E+u



Inference about predicted value of Y

The length of the prediction interval for an actual value of Y is longer than the

confidence interval for E(Y) when both are determined at the same x*.
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Extending simple regression to multiple regression

To extend simple linear regression to multiple regression models, we need
matrix representation of linear model.

A linear model
Yi = Bo + B1Xit + BaXig + -+ + BrXi

can be written in the matrix form as Y = X3 + ¢, where

» 1 X1 X2 - Xk Bo €1
) 1 Xo1 X2 -0 Xek Bi €2

Yn 1 Xm Xp2 -+ Xok Bk €n



Fitting linear model by using matrices

Here, we briefly state how linear model is fit by using matrices. These results
simply extends properties of simple linear regression to multiple regressions.
Using matrix representation, the sum square of error (SSE) is

(Y —XB3)(Y — XB)

Taking derivative of SSE with respect to 3 and set it to zero, we obtain what
is often referred to as the normal equation

X' Xg=X"Y
Solving the normal equation, the solution is
B=X"X)"X"y

where (X7 X)~ is generalized inverse of X™ X



Fitting linear model by using matrices

Example: We fit a simple linear regression y = 3y + S1x. We observed a
sequence of y as 0,0,1,1,3and x as —2,—1,0,1,2.

Using algebraic results for simple linear regression, we estimate the
regression parameters as

s Sy Yo i—Xi-¥)
TS e

027_ 17:1

=

Next, we use matrix representation of the linear regression. We can see that
the matrix representation of the regression yield the same estimates.



Fitting linear model by using matrices

In matrix representation, the data are

0 1 -2
0 1 -1
Y=|1|, X=1|1 0
1 11
3 1 2
It follows that
5
xx=|> ° XY=, (XTX)" =
0 10 7

Thus,

1/5 0
0 1/10

s ru_ury |15 0 ][5] [1
A= X)X Y_[o 1/10] [7]_[0.7}



Properties of least square estimators

In a multiple regression y; = fo + B1Xi1 + B2Xi2 + - - - + Bk Xi, least square
estimator has the same properties as the simple linear regression, just

expressed in matrix form.

Parameter estimates are unbiased E(3) = 3;

Var(8;) = cio?, where c; is the element in row i and column i of the
matrix (XTX)~;

Cov(Bi, B)) = c,-,-a2 where c; is the element in row / and column j of the
matrix XTX~;

An unbiased estimator of o2 is s> = SSE/(n— k — 1), where
SSE=(Y-XB")T(Y-XB)=YTY - 3TXTY;

Each s; is normally distributed;

(n—k —1)s?/02 has a x?(n — k — 1) distribution;

All 5; and s? are independent.



Inferences in multiple linear regression

In simple linear regression, we use t-distribution to construct confidence
interval for parameters or linear functions of parameters. For example,
100(1 — a)% confidence interval for 6 = apBo + a1 31

\/azzx,? + & — 2aparX
é\i a(n—2 0 _n 1
ta ( )s 5.

In multiple regression, we derive the confidence intervals in the same way,
just in matrix representation:

a'BLts(n—k—1)s\/a”(X"X)~a



Inferences in multiple linear regression

In a simple linear regression, a 100(1 — «)% prediction interval is constructed
from the t-distribution. At x*, the prediction interval is

2 Ak 1 (X*—Y)Z
(Bo + B1x )j:t%(n_z)s\/1 +E+T

In multiple regression, prediction interval is derived the same way. The
prediction interval expressed in matrix form is

a'BLts(n—k—1)s\/1+a’(X"X)~a

where a” = [1,x7,%5,...,x{]



Inferences in multiple linear regression

Hypotheses about the value of a parameter or a linear function of parameters
can be written generally as
AB=d

Example: In a linear regression y = o + B1x1 + B2X2, the hypothesis
Hp : 81 = 0 can be written in matrix form where

Ho : Bo = 0 and 31 = (B2 can be written in matrix form where

Bo
1 0 O 0
B2



Inferences in multiple linear regression

In a simple linear regression, hypotheses concerning a single parameter or
linear function of parameters is tested using t-statistic, or equivalently,
F-statistics constructed from sum of squares.
3. 3.2
Btk 1,8SH/1

Cjio
5 = ~ Fin-2

(=3¢ (n_2) %SSE/(n—2)

The same procedure can be extended to multiple linear regression:

SSH=(AB—d)"(AX"X)"AT)"(AB — d)
SSE=YTY-3"X"Yy

- SSH/m
1L SSE/(n—k — 1)

~ Fm,n7k71

where m is the number of independent hypotheses.



Inferences in multiple linear regression

In general, hypotheses in linear regression models are tested using F
statistic. Since the F statistic is constructed from various sum of square, the
results of hypotheses testings in linear regressions are usually presented in a
so-called ANOVA table.
® SSH or SSE are usually labelled sum of squares;
e Sum of squares divided by the corresponding degrees of freedom is
mean squares;

® F-statistics is typically constructed from ratios of mean squares.



Assessing model fit

Coefficient of determination, commonly denoted as R?, is a commonly
used metric representing the goodness of model fit in linear models.

_ ﬁ 1 _ 27:1(}’/ *}71')2
SST Y=Yy
— SSM _ 27:1 (}7! _Y)Z
SST YL (i—¥y

R? =1

A few comments on R?
* R?is a summary statistics representing overall model fit. It does not
necessarily check model assumptions;
* R?increases if you include more independent variables in the model.
Statistician also develop adjusted R? to account for such a fact.
n—1

Rgdj:1_(1—/q2)'m



Assessing model fit

Visually, R? can be roughly interpreted as the “closeness” of observed values
of the response variable around the fitted regression line.

8 1R2=0.98 8 {R2=0.72 8 1R2=0.57 .

(Contrasting different values of R?)



