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Interval estimation

We have used the pivotal method for constructing confidence intervals.

However, it is sometimes impossible to find a pivotal quantity. Under these

situations, we need other techniques to find confidence intervals.

• Asymptotic distribution of statistics;

• Distribution free confidence intervals;

• Resampling based confidence intervals.



Confidence interval of maximum likelihood estimate

Recall that the maximum likelihood estimate θ̂ for a parameter θ

asymptotically has a normal distribution

θ̂ ∼ N(θ, I(θ)−1)

where I(θ) is the Fisher information defined as

I(θ) = E
[(∂ ln L(θ)

∂θ

)2
]

= −E
(
∂2 ln L(θ)

∂θ2

)
= −nE

(
∂2 ln f (x |θ)

∂θ2

)



Confidence interval of maximum likelihood estimate

The asymptotic properties of maximum likelihood estimates provide a

generally applicable approach to deriving confidence interval.

P(−zα/2 <
θ̂ − θ√
I(θ)−1

< zα/2) ≈ 1 − α

Thus, the 100(1 − α)% confidence interval for θ is

θ̂ ±
zα/2√

I(θ)

Because θ is unknown, I(θ) is approximated by the observed Fisher

information I(θ̂), i.e. Fisher information evaluated at the maximum likelihood

estimate θ̂.



Confidence interval of maximum likelihood estimate

Previously, we can analytically derive the distribution of sample mean based

on a sample from a normal distribution to construct its confidence interval.

Now, we consider using the maximum likelihood framework to do so.

For a sample X1,X2, . . . ,Xn, the log-likelihood is

ln L(µ, σ2) =
n∑

i=1

(
ln(

1
σ
√

2π
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2σ2

)
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σ2
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∂µ2 = − n
σ2

I(µ) = −E
(∂2 ln L(µ, σ2)

∂µ2

)
=
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σ2



Confidence interval of maximum likelihood estimate

From previous lectures, we know that the maximum likelihood estimate for µ

is X . The confidence interval can thus be approximated by using observed

Fisher information for deriving the variance.

X ± zα/2

√
σ̂2

n

where σ̂2 =
∑n

i=1(Xi − X )2/n is the variance of MLE evaluated at MLE X .



Confidence interval of maximum likelihood estimate

Recall the problem of calculating confidence interval for µX − µY when we

cannot assume that σX = σY . We can use the maximum likelihood approach

to deriving its confidence interval. Recall that

(X − Y ) ∼ N(µX − µY , σ
2
X + σ2

Y )

Thus, using the result of confidence interval for the mean of a normal

distribution, the confidence interval is

X − Y ± zα/2

√
s2

X/n + s2
Y/m

Note here that the variance of the MLE should be its variance evaluated at

the MLE. Thus s2
X =

∑n
i=1(Xi − X )2 and s2

Y =
∑m

i=1(Xi − X )2



Confidence interval of maximum likelihood estimate

Comments on confidence interval of the difference of means:

• Depending on whether we can assume equal variance of X and Y , the

confidence interval for µX − µY differs. It is thus critical to assess

whether the equal variance assumption is valid or not.

• The confidence interval based on equal variance performs very poorly

when variances are not actually equal and sample size of X and Y differ

substantially.

• if the sample variance differs a lot between X and Y and their respective

sample size are vastly different, it is safer and more robust to construct

confidence interval assuming unequal variance.



Confidence interval for proportions

Let X be the number of success in n independent Bernoulli trials. How do we

construct confidence interval for the success probability p?

The log-likelihood is

ln L(p) = ln
(

Ck
npX (1 − p)n−X

)
= lnCX

n + x ln p + (n − x) ln(1 − p)

d ln L(p)
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=
x
p
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dp2 = − x
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)
=

n
p
+

n
1 − p

=
n

p(1 − p)



Confidence interval for proportions

The maximum likelihood estimate p̂ = X/n is obtained by

d ln L(p)
dp

=
x
p
− n − x

1 − p
= 0

Using the asymptotic properties of maximum likelihood estimate

P
(
− zα/2 <

p̂ − p√
p(1 − p)/n

< zα/2

)
≈ 1 − α

Using observed Fisher information, the 100(1 − α)% confidence interval is

p̂ ± zα/2

√
p̂(1 − p̂)

n



Confidence interval for proportions

We use the asymptotic properties of MLE to construct confidence interval.

When n is large and p is not too small, the coverage probability is

approximately correct. But if n is not sufficiently large or if p is fairly close to 0

or 1, improvements are needed.

The Wilson score method directly solve the inequality

zα/2 <
p̂ − p√

p(1 − p)/n
< zα/2

to obtain the confidence interval

p̂ + z2
α/2/(2n)± zα/2

√
p̂(1 − p̂)/n + z2

α/2/(4n2)

1 + z2
α/2/n



Confidence interval for proportions

Agresti and Coull (1998) suggested that we use p̃ = (X + 2)/(n + 4) as an

estimator for p when n is small or if X is close to 0 or n. The confidence

interval is

p̃ ± zα/2

√
p̃(1 − p̃)/(n + 4)

If we form 95% confidence interval, zα/2 = 1.96 ≈ 2. The 95% confidence

interval using the Wilson score method, it is centered at

p̂ + z2
α/2/(2n)

1 + z2
α/2/n

=
X + z2

α/2/2
n + z2

α/2

≈ X + 2
n + 4

Thus it is roughly consistent with the Agresti and Coull method.



Distribution-free confidence intervals

Let X(1),X(2), . . . ,X(n) be a random sample sorted from the smallest to the

largest. We call X(j) the j th order statistics of the random sample. For the

100p% percentile of the distribution m, we have

P(X(i) < m < X(j)) =

j−1∑
k=i

Ck
npk (1 − p)n−k = 1 − α

This approach only uses the order statistics to construct confidence intervals.

Little is assumed about the underlying distribution, except that the distribution

is continuous. Thus, these confidence intervals are called distribution-free

confidence intervals.



Distribution-free confidence intervals

Example: Suppose we have a sample X1 < X2 < X3 < X4 < X5. One

confidence interval of the median m is

P(X1 < m < X5) =
4∑

k=1

Ck
5(

1
2
)k (

1
2
)5−k = 0.9375

P(X2 < m < X4) =
3∑

k=2

Ck
5(

1
2
)k (

1
2
)5−k = 0.625

The interval (X1,Xn) tends to get wider as n increases, thus we are not

“pinning down” m very well. However, if we used the interval (X2,Xn−1) or

(X3,Xn−2), we would obtain shorter intervals, but also smaller confidence

coefficient.



Distribution-free confidence intervals

As you can see, confidence interval based on order statistic has a prominent

shortcoming: we can calculate the confidence coefficient of an interval, but

we cannot construct an interval with a pre-specified confidence coefficient.

This approach, therefore, is not widely used in practice. Only use it if there

are not other available approach to calculate confidence interval.



Resampling based confidence intervals

Suppose that we need to find the distribution of some statistic, but we do not

know its sampling distribution. We observed the values of X1,X2, . . . ,Xn. The

empirical distribution found by placing weight 1/n on each Xi is a best

estimate of that distribution. A resampling based confidence interval can be

constructed using the following steps:

• Sample from X1,X2, . . . ,Xn with replacement;

• Calculate the statistic of interest from the sample drawn;

• Repeat the above procedures many times to obtain a empirical

distribution of the statistic;

• Obtain the confidence interval of the statistic from its empirical

distribution

This approach is also referred to as bootstrapping. It allows us to substitute

computation for theory for statistical inference.



Resampling based confidence interval

Example: We have a random sample of size 10:

0.17,−0.27,−1.70, 0.89,−0.14, 0.88,−0.87, 0.25,−1.65,−0.45.

Use bootstrapping to find the 95% confidence interval of the mean µ.

Using 5000 iterations of resampling and the percentile method, we obtain the

95% confidence interval as (−0.832, 0.256).



Resampling based confidence interval

A few comments about resampling based confidence interval

• After obtaining the empirical distribution of the statistic, there are

alternative methods in addition to the percentile method. The resulting

CI can differ depending on which method you choose.

• Resampling approach is effective when the original sample size is big.

After all, the method relies on using the empirical distribution of data to

approximate the underlying distribution.

• Iterations of resampling should be sufficiently large to obtain reliable

empirical distribution of the statistic. If computation is not too time

consuming, it is better to have large number of iterations just to be safe.


