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Power of a hypothesis test

Recall the two types of errors associated with a hypothesis test.

Not reject H0 Reject H0

H0 is true Correct Type I error (α)

H0 is false Type II error (β) Correct

While we control rate of the type I error by setting the significance level α, we

typically do not know the rate of type II error. Ideally, we want to minimize

type II error β. Or equivalently, we want to maximize the probability of

rejecting H0 when it is not true, 1 − β, which we call the power of a test.



Power of a hypothesis test

The power of a statistical test typically depends on the significance level, the

true value of the parameter, and the sample size.

Graphic illustration of type I, type II errors and statistical power.



Power of a hypothesis test

Example: Let X1,X2, . . . ,Xn be a random sample drawn from N(µ, σ2).

When σ2 is unknown, we use a t-test to test the hypothesis H0: µ = 0 against

Ha: µ ̸= 0. What is the power of this test?

Using a t-test, we reject H0 at the α level if

T =
X − µ0

s/
√

n
⩾ tα

2
(n − 1) or T =

X − µ0

s/
√

n
⩽ −tα

2
(n − 1)

That is, we reject H0 if

X ⩾ µ0 + tα
2
(n − 1)

s√
n

or X ⩽ µ0 − tα
2
(n − 1)

s√
n



Power of a hypothesis test

The power of the test is

P
(

X ⩾ µ0 + tα
2
(n − 1)

s√
n

or X ⩽ µ0 − tα
2
(n − 1)

s√
n

∣∣∣ µ)
Note that when µ ̸= µ0, T = X−µ

s/
√

n ∼ t(n − 1), the power of the test is

P
(

T ⩾
µ0 − µ

s/
√

n
+ tα

2
(n − 1) or T ⩽

µ0 − µ

s/
√

n
− tα

2
(n − 1)

)
,

the value of which depends on µ, n, and α.



Power of a hypothesis test

Power of a one sample t-test when (a) sample size n = 10 and (b) µ0 −µ = 2.

For both panels, α = 0.05 and the sample standard deviation s = 2.



Best critical region

For a particular hypothesis test H0: θ = θ0, we define a critical region C of

size α as P(C|θ0) = α. What is the best way to define such a critical region?

Recall the two type of errors associated with hypothesis testing. The

significance level α determines the rate of type I error. Thus, for a critical

region with pre-specified α, we want to minimize type II error.

A critical region of size α for H0: θ = θ0 is the best critical region if, for every

other critical region D of size α, we have

P(C|θ = θ1) ⩾ P(D|θ = θ1)

where θ1 ̸= θ. That is, when H0 is not true, the probability of rejecting H0 with

the use of critical region C is at least as great as the corresponding

probability with the use of any other critical region D of the same size α.



Best critical region

Neyman–Pearson Lemma: Let X1,X2, . . . ,Xn be a random sample of size n

from a distribution with PDF or PMF f (x |θ), where θ0 and θ1 are two possible

values of θ. Let L(θ) be the likelihood function, ie.,

L(θ) = f (X1|θ)f (X2|θ) · · · f (Xn|θ).

If there exist a positive constant k and a region C such that

• P
[
(X1,X2, . . . ,Xn) ∈ C|θ0

]
= α;

• L(θ0)

L(θ1)
⩽ k for (X1,X2, . . . ,Xn) ∈ C;

• L(θ0)

L(θ1)
⩾ k for (X1,X2, . . . ,Xn) /∈ C

then C is the best critical region of size α for testing H0: θ = θ0 against Ha:

θ = θ1.



Most powerful test

A test defined by a best critical region is the most powerful test because it

has the greatest value of power compared with other tests with the same

significance level α. A test is called a uniformly most powerful test if it is

the most powerful test against each possible hypothesis in Ha.

• Neyman-Pearson Lemma suggests that we can find a most powerful test

for a single point null and alternative hypotheses based on the ratio of

likelihood. However, for composite hypotheses, the uniformly most

powerful test may not exist.

• Neyman-Pearson Lemma requires that the likelihood function does not

contain unknown parameters.

• Nonetheless, the lemma suggests that likelihood ratio may be a general

way for constructing hypothesis testing even thought it is not always the

most powerful.



Likelihood ratio test

Let Ω be the set of all possible values of parameter θ given by either H0 or Ha.

Let ω be a subset of Ω and ω′ be its complement. The null and alternative

hypotheses can be stated as

H0 : θ ∈ ω, Ha : θ ∈ ω′

Let L(ω̂) be the maximum of the likelihood function with respect to θ when

θ ∈ ω and L(Ω̂) be the maximum of the likelihood function with respect to θ

when θ ∈ Ω. To test H0 against Ha, the critical region is the set of points in the

sample space for which

λ =
L(ω̂)
L(Ω̂)

⩽ k ,

where 0 < k < 1 and k is selected so that the test has a desired significance

level α.



Likelihood ratio test

Intuitively, L(Ω̂) represents the best explanation for the observed data when

either H0 or H1 is true, i.e., θ ∈ Ω = ω ∪ ω′. Similarly. L(ω̂) represents the

best explanation for the observed data when H0 is true. When L(ω̂) = L(Ω̂),

the best explanation for the observed data can be found inside ω and we

should not reject H0. However, if L(ω̂) < L(Ω̂), the best explanation of data

can be found in ω′ and we should reject H0 and favor Ha.

In fact, many of the hypothesis tests we discussed in previous lectures are

likelihood ratio tests, although we did not explicitly derive it from the principle

of likelihood ratio.



Likelihood ratio test

Example: Suppose a random sample X1,X2, . . . ,Xn arises from a normal

population N(µ, σ2), where both µ and σ2 are unknonwn. Construct the

likelihood ratio test of H0: µ = µ0 against Ha: µ ̸= µ0.

For this test, the parameter spaces are

ω = {(µ, σ2) : µ = µ0, 0 < σ2 < ∞}

Ω = {(µ, σ2) : −∞ < µ < ∞, 0 < σ2 < ∞}

If (µ, σ2) ∈ Ω, the maximum likelihood estimates are µ̂ = X and

σ̂2 = (1/n)
∑n

i=1(Xi − X )2. Thus

L(Ω̂) =
n∏

i=1

[
1√

2π( 1
n )

∑n
i=1(Xi − X )2

exp

[
− (Xi − X )2

( 2
n )

∑n
i=1(Xi − X )2

]]

=

[
1

2π( 1
n )

∑n
i=1(Xi − X )2

]n/2

exp

[
−
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∑n
i=1(Xi − X )2

]



Likelihood ratio test

L(Ω̂) =
[

ne−1

2π
∑n

i=1(Xi − X )2

]n/2

If (µ, σ2) ∈ ω, µ = µ0 and the maximum likelihood estimate is

σ̂2 = (1/n)
∑n

i=1(Xi − µ0)
2. Thus,

L(ω̂) =
n∏

i=1

[
1√

2π( 1
n )

∑n
i=1(Xi − µ0)2

exp

[
− (Xi − µ0)

2

( 2
n )

∑n
i=1(Xi − µ0)2

]]

=

[
ne−1

2π
∑n

i=1(Xi − µ0)2

]n/2

The likelihood ratio is

λ =
L(ω̂)
L(Ω̂)

=

[ ∑n
i=1(Xi − X )2∑n
i=1(Xi − µ0)2

]n/2



Likelihood ratio test

Note that
n∑

i=1

(Xi − µ0)
2 =

n∑
i=1

(Xi − X + X − µ0)
2 =

n∑
i=1

(Xi − X )2 + n(X − µ0)
2

Make the substitution in the denominator of λ, we have

λ =

[ ∑n
i=1(Xi − X )2∑n

i=1(Xi − X )2 + n(X − µ0)2

]n/2

=

[
1 +

n(X − µ0)
2∑n

i=1(Xi − X )2

]−n/2

The likelihood ratio test given by λ ⩽ k is[
1 +

n(X − µ0)
2∑n

i=1(Xi − X )2

]−n/2

⩽ k



Likelihood ratio test

Solving the inequality, we have

(X − µ0)
2[ 1

n−1

∑n
i=1(Xi − X )2

]
/n

⩾ (n − 1)(k−2/n − 1)

Or, equivalently, (
X − µ0

s/
√

n

)2

⩾ (n − 1)(k−2/n − 1)

where s2 is the sample variance.

This is clearly equivalent to the two tailed t-test for testing the mean of a

normal population where we reject H0 if

T ⩾ tα/2(n − 1) or T ⩽ −tα/2(n − 1).

where the test statistic T is calculated as X−µ0
s/

√
n



Likelihood ratio test

The likelihood ratio method does not always produce a test statistic with a

known probability distribution. How do we use likelihood ratio test then?

Wilk’s theorem: Let r0 and r be the number of free parameters under ω and

Ω, respectively. Under regularity conditions, −2 ln(λ) asymptotically

approaches χ2(r − r0) as sample size approaches ∞.

• The theorem gives us a general way of hypothesis testing. When sample

size is large, we compare −2 ln(λ) to a chi-square distribution with

appropriate degrees of freedom. We reject the null hypothesis if the test

statistic −2 ln(λ) exceeds the critical value.

• The regularity conditions mainly involve the existence of derivatives of

the likelihood function with respect to the parameters and the condition

that the region over which the likelihood function is positive does not

depend on unknown parameters. These conditions are satisfied for

almost all distributions we discussed in this class.



Likelihood ratio test

Example: Let X1,X2, . . . ,Xn be a random sample from a Poisson distribution

with unknown parameter λ. Test H0: λ = λ0 against Ha: λ ̸= λ0.

Recall that the maximum likelihood estimate of λ for a Poisson distribution is

λ̂ = X . Under H0, no parameter needs to be estimated, thus

L(ω̂) =
n∏

i=1

λ
Xi
0

Xi !
e−λ0 =

λ
∑n

i=1 Xi
0 e−nλ0∏n

i=1 Xi !

L(Ω̂) =
n∏

i=1

X
Xi

Xi !
e−X =

X
∑n

i=1 Xi e−nX∏n
i=1 Xi !



Likelihood ratio test

Let Λ be the likelihood ratio test statistic.

Λ = −2 ln

(
L(ω̂)
L(Ω̂)

)
= −2 ln

(
λ
∑n

i=1 Xi
0 e−nλ0

X
∑n

i=1 Xi e−nX

)

= 2n
(

X ln
( X
λ0

)
− X + λ0

)
Here, Λ ∼ χ2(1). We reject H0: λ = λ0 if Λ ⩾ χ2

α(1).


