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Continuous random variables

Recall: The cumulative distribution function (CDF) of a random variable X is

the function F (x) : R → [0, 1] given by F (x) = P(X ⩽ x)

Definition 1: A random variable X is said to be of continuous type if its

cumulative distribution function F (x) is continuous on its support.

Definition 2: A random variable X is continuous if it takes infinite number of

values within a interval or within the joint of several intervals on the real

number.

Examples:

• length of time between machine failure;

• height of student in Lanzhou University;

• total biomass of sampling quadrants in grasslands;

• amount of precipitation received in a day.



Probability density function

We use probability mass function to represent the probability that a discrete

random variable takes certain value. However, because continuous random

variable can take infinite number of values, we cannot directly define a

probability that a continuous random variable takes on a particular value.

Definition: Let F (x) be the cumulative distribution function of a continuous

random variable X . Probability density function, abbreviated as PDF, is a

function f (x) such that

F (x) =
∫ x

−∞
f (s)ds



Probability density function

A probability density function of a continuous random variable X with space S

that is an interval or union of intervals, is an integrable function f (x) satisfying

the following conditions:

• f (x) ⩾ 0, x ∈ S;

• ∫
S f (x)dx = 1;

• If (a, b) ⊆ S, the probability of event a < X < b is

P(a < X < b) =
∫ b

a
f (x)dx



Probability density function

Probability density function is not a probability. The area under the

probability density function curve, i.e., the integration of probability density

function, is probability.



Probability density function

Example: Let the random variable X denote the outcome when a point is

selected at random from interval [a, b]. If the point is selected at random, the

probability that the point is selected from the interval [a, x ] is (x − a)/(b − a).

Thus the cumulative distribution function of X is

F (x) =


0, x < a,
x−a
b−a , a ⩽ x ⩽ b,

1, b ⩽ x

which can be written as

F (x) =
∫ x

−∞
f (x)dx

where

f (x) =
1

b − a
, a ⩽ x ⩽ b



Probability density function

The random variable X has a uniform distribution if its PDF is equal to a

constant on its support. In particular, if the support is interval [a, b], then

f (x) =
1

b − a
, a ⩽ x ⩽ b

PDF and CDF of a uniform distribution



Deriving probability density function

For discrete random variables, we can directly derive the probability mass

function. For continuous random variables, however, we derive probability

density function by taking the derivative of the cumulative distribution function:

f (x) =
dF (x)

dx

Example: Suppose we select a point at random in the interior of a circle of

radius 1. Let X be the distance of the selected point from the origin. What is

the probability density function of X?

Answer: Because a point is selected at random, the event X ⩽ x is equivant

to the point lying in a circle of radius x . Hence, the CDF of X is

F (x) = P(X ⩽ x) = πx2/π = x2, 0 ⩽ x ⩽ 1

The PDF of X is

f (x) =
dF (x)

dx
= 2x , 0 ⩽ x ⩽ 1



Probability density function

Comments on probability density function:

• Probability mass function of a discrete random variable is bounded

between 0 and 1. In contrast, probability density function does not have

to be bounded. The restriction is that the area between PDF and the

x-axis must equal 1;

• The PDF of a continuous random variable X does not need to be a

continuous function. The cumulative distribution function must be

continuous for a continuous random variable.



Mathematical expectation

Let f (x) be the probability density function of continuous random variable X ,

the mathematical expectation of u(x) is calculated as

E [u(x)] =
∫ ∞

−∞
u(x)f (x)dx

The mean and variance of a continuous variable is calculated as

E(X ) =

∫ ∞

−∞
xf (x)dx , Var(X ) =

∫ ∞

−∞
(x − µ)2f (x)dx

The moment generating function of a continuous random variable is

MX (t) =
∫ ∞

−∞
etx f (x)dx



Mathematical expectation

Example: What is the mean and variance for U(a, b)?

E(X ) =

∫ b

a
x

1
b − a

dx =
1

b − a
x2

2

∣∣∣∣b
a

=
1

b − a
b2 − a2

2
=

a + b
2

Var(X ) =

∫ b

a
(x − µ)2 1

b − a
dx

=
1

b − a
(x − µ)3

3

∣∣∣∣b
a

=
1

b − a

[
(b − a)3

24
− (a − b)3

24

]
=

(b − a)2

12



Mathematical expectation

Example: X has a probability density function f (x) = λe−λx , x ⩾ 0. What is

the expected value of X?

E(X ) =

∫ ∞

0
xλe−λx dx

Integrating by parts with u = λx and dv = e−λx dx so that du = λdx and

v = − 1
λ

e−λx

E(X ) = (−xe−λx − 1
λ

e−λx)
∣∣∣∞
0

=
1
λ



Percentile

Definition: The 100pth quantile of a continuous random variable is a number

q such that ∫ q

−∞
f (x)dx = p

The 50th percentile is called the median or the second quartile. The 25th

and 75th percentiles are called the first and third quartiles, respectively.



Percentile

Example: The time X in months until the failure of a product as the PDF

f (x) =
3x2

43 e−(x/4)3 , x > 0

Its CDF is thus

F (x) = 1 − e−(x/4)3 , x ⩾ 0

The 30th percentile q0.3 is given by F (q0.3) = 0.3. That is

1 − e−(q0.3/4)3 = 0.3

ln(0.7) = −(q0.3/4)3

q0.3 = 2.84

Similarly, q0.9 is found by F (q0.9) = 0.9 so q0.9 = 5.28



Percentile

Example: The illustration of the 30th and 90th percentiles are shown in the

graph of the PDF and CDF of the distribution for X :



Exponential distribution

A Poisson distribution models the number of occurrence in a given time

interval. Not only is the number of occurrences a random variable; the waiting

times between successive occurrences are also random variables, but is of a

continuous type.

Let W denote the waiting time until the first occurrence during an observation

of a Poisson process in which the mean number of occurrence in a unit time

interval is λ. What is the distribution of W?

F (w) = P(W ⩽ w) = 1 − P(W > w)

= 1 − P(no occurrence in [0,w ])

= 1 − (λw)0

0!
e−λw = 1 − e−λw

f (w) = F ′(w) = λe−λw



Exponential distribution

We often let λ = 1/θ and say that a random variable X has an exponential

distribution if its PDF is defined as

f (x) =
1
θ

e−x/θ

What is the meaning of the parameter θ?

The moment generating function of X is

M(t) =
∫ ∞

0
etx 1

θ
e−x/θdx =

∫ ∞

0

1
θ

e(θt−1)x/θdx

=
[ 1
θt − 1

e(θt−1)x/θ
]∣∣∣∣∞

0
=

1
1 − θt

, t <
1
θ
.

Thus, we have

M ′(t) =
θ

(1 − θt)2 , M ′′(t) =
2θ2

(1 − θt)3

µ = M ′(0) = θ, σ2 = M ′′(0)− [M ′(0)]2 = θ2



Exponential distribution

From the derivation of exponential distribution, we see that its CDF is

F (x) = 1 − e−x/θ, x ⩾ 0.

Note that for an exponential random variable X with mean θ, we have

P(X > x) = 1 − F (x) = 1 − (1 − e−x/θ)

= e−x/θ, x ⩾ 0.



Exponential distribution

Example: Let X be a random variable following exponential distribution with

a mean of θ, what is the median of the distribution?

The CDF of X is

F (x) = 1 − e−x/θ

The median m is found by solving F (m) = 0.5. That is

1 − e−m/θ = 0.5

Thus,

m = −θ ln(0.5) = θ ln(2)



Exponential distribution

For an exponential distribution, the median is typically smaller than the mean,

i.e, m = θ ln(2) < θ, as shown in the figure below.



Exponential distribution

Example: Customers arrive in a certain shop according to an approximate

Poisson process at a mean rate of 20 per hour. What is the probability that

the shopkeeper will have to wait more than 5 minutes for the arrival of the first

customer?

Let X denote the waiting time in minutes until the first customer arrives and

λ = 1/3 is the expected number of arrivals per minute. Thus

θ =
1
3
= 3

and

f (x) =
1
3

e−x/3, x ⩾ 0

Hence,

P(X > 5) =
∫ ∞

5

1
3

e−x/3dx = e−5/3 = 0.1889



Exponential distribution

Theorem: Exponential distribution is memoryless, that is, if X has an

exponential distribution, then

P(X > s + t |X > s) = P(X > t)

If X has an exponential distribution f (x) = 1
θ
e−x/θ

P(X > t) =
∫ ∞

t

1
θ

e−x/θdx = e−t/θ

P(X > s + t |X > s) =
P(X > s + t ,X > s)

P(X > s)

=
P(X > s + t)

P(X > s)

=
e−(s+t)/θ

e−s/θ = e−t/θ



Gamma distribution

In a Poisson process with mean λ, we now let W denote the waiting time until

the αth occurrence. What is the distribution of W?

The CDF of W is given by

F (w) = P(W ⩽ w) = 1 − P(W > w)

= 1 − P(fewer than α occurrences in [0,w ])

= 1 −
α−1∑
k=0

(λw)k e−λw

k !

f (w) = F ′(w) = λe−λw − e−λw
α−1∑
k=1

[k(λw)k−1λ

k !
− (λw)kλ

k !

]
= λe−λw − e−λw

[
λ− λ(λw)α−1

(α− 1)!

]
=

λ(λw)α−1

(α− 1)!
e−λw



Gamma distribution

The random variable W is said to have a gamma distribution if its PDF has

this form. To generalize the PDF of W , we define the gamma function

Γ(t) =
∫ ∞

0
y t−1e−y dy , t > 0

If t > 1, integrating the gamma function of t by parts yields

Γ(t) =
[
− y t−1e−y

]∞
0

+

∫ ∞

0
(t − 1)y t−2e−y dy

= (t − 1)
∫ ∞

0
y t−2e−y dy = (t − 1)Γ(t − 1)

Whenever t = n, a positive integer, we have Γ(n) = (n − 1) . . . (2)(1)Γ(1).

However,

Γ(1) =
∫ ∞

0
e−y dy = 1

We thus have Γ(n) = (n − 1)! for positive integers. For this reason, the

gamma function is also called a generalized factorial.



Gamma distribution

The random variable X has a gamma distribution if its PDF is defined by

f (x) =
1

Γ(α)θα
xα−1e−x/θ

The moment generating function of a gamma distribution is

M(t) =
1

(1 − θt)α
, t <

1
θ

The mean and variance are

µ = αθ and σ2 = αθ2



Gamma distribution

A gamma PDF can take a variety of shape depending on the values of

parameters α and θ.



Gamma distribution

Example: Suppose the number of customers per hour arriving at a shop

follows a Poisson process with mean 30. That is, if a minute is our unit, then

λ = 1/2. What is the probability that the shopkeeper will wait more than 5

minutes before both of the first two customers arrive?

If X denotes the waiting time in minutes until the second customer arrives, X

has a gamma distribution with α = 2 and θ = 1/θ = 2. Then,

P(X > 5) =
∫ ∞

5

x2−1e−x/2

Γ(2)22 dx =

∫ ∞

0

xe−x/2

4
dx

=
1
4

[
(−2)xe−x/2 − 4e−x/2

]∞
5

=
7
2

e−5/2 = 0.287



Chi-square distribution

We now consider a special case of gamma distribution with θ = 2 and

α = r/2. We say X has a chi-square distribution with r degrees of

freedom, which we abbreviate by χ2(r). Its PDF is:

f (x) =
1

Γ(r/2)2r/2 x r/2−1e−x/2, x > 0

The moment generating function is

M(t) = (1 − 2t)−r/2

The mean and variance are

µ = r and σ2 = 2r



Chi-square distribution

A chi-square distribution has only one parameter r , often called the degrees

of freedom, that determines the shape of its PDF.



Chi-square distribution

Example: If X is χ2(18), then the constant a such that P(X > a) = 0.95 is

a = 9.39. Probabilities like this are important in statistical applications that we

use special symbols for a.

Let α be a positive probability and let X have a chi-square distribution with r

degrees of freedom. Then χ2
α(r) is a number such that

P
[
X ⩾ χ2

α(r)
]
= α

That is, χ2
α(r) is the 100(1 − α)th percentile of the chi-square distribution with

r degrees of freedom.



Chi-square distribution

Graphically, χ2
α(r) is the upper 100αth percent point of the distribution.



Normal distribution

When observed over a large population, many variables have a “bell-shaped”

relative frequency distribution, i.e., one that is approximately symmetric and

relatively higher in the middle of the range of values than at the extremes.

Examples include such variables as physical measurements (height, weight,

length) of organisms, and repeated measurements of the same quantity on

different occasions or by different observers. A very useful family of

probability distributions for such variables are the normal distributions.



Normal distribution

A random variable X has a normal distribution if its PDF is

f (x) =
1

σ
√

2π
e− (x−µ)2

2σ2

where µ and σ are parameters satisfying −∞ < µ < ∞ and 0 < σ < ∞.



Normal distribution

The moment generating function of a normal distribution is

M(t) =
∫ ∞

−∞

etx

σ
√

2π
exp

[
− (x − µ)2

2σ2

]
dx

=

∫ ∞

−∞

1
σ
√

2π
exp

[
− 1

2σ2

[
x2 − 2(µ+ σ2t)x + µ2]]dx

Rearrange the exponent:

x2 − 2(µ+ σ2t)x + µ2 = [x − (µ+ σ2t)]2 − 2µσ2t − σ4t2

Hence,

M(t) = exp
(2µσ2t + σ4t2

2σ2

)∫ ∞

−∞

1
σ
√

2π
exp

[
− [x − (µ+ σ2t)2]

2σ2

]
dx

= exp
(
µt +

σ2t2

2

)



Normal distribution

Based on the moment generating function, we can derive the mean and

variance of a normal distribution:

M ′(t) = (µ+ σ2t) exp
(
µt +

σ2t2

2

)
M ′′(t) = ((µ+ σ2t)2 + σ2) exp

(
µt +

σ2t2

2

)
Consequently,

E(X ) = M ′(0) = µ

Var(X ) = M ′′(0)− [M ′(0)]2 = σ2

That is, the parameter µ and σ2 in the PDF of the normally distributed X are

the mean and variance of X . We often abbreviate normal distribution as

X ∼ N(µ, σ2)



Normal distribution

From the derivations above, we can see the mean and variance of a normal

distribution if we are given the PDF or MGF.

Example: if the PDF of X is

f (x) =
1√
32π

exp
[
− (x + 7)2

32

]
then X ∼ N(−7, 16)

Example: If the moment generating function of X is

M(t) = exp(5t + 12t2)

then X ∼ N(5, 24)



Normal distribution

A normal distribution with mean 0 and standard deviation 1 is a standard

normal distribution. Its probability density function is

f (z) =
1√
2π

e− z2
2

and its cumulative distribution function is

Φ(z) = P(x ⩽ z) =
∫ z

−∞

1√
2π

e− w2
2 dw



Normal distribution

Theorem: If X ∼ N(µ, σ2), then Z = x−µ
σ

is N(0, 1).

Proof: The cumulative distribution function of Z is

P(Z ⩽ z) = P(
X − µ

σ
⩽ z) = P(X ⩽ zσ + µ)

=

∫ zσ+µ

−∞

1
σ
√

2π
e− (x−µ)2

2σ2 dx

We now use the change of variable integration given by w = (x − µ)/σ (i.e.,

x = wσ + µ) to obtain

P(Z ⩽ z) =
∫ z

−∞

1√
2π

e− w2
2 dw

This is useful because we can calculate probability of a normal distribution

based on the probability of a standard normal distribution.



Calculate probability and quantile

Traditionally, probability and statistics course teach students using probability

table to get probabilities. Now it is convenient to use software to directly

calculate probabilities.

In R, there are functions you can use to get probability density, cumulative

probability, or quantiles.

> dnorm(x = 1.5, mean = 0, sd = 1)

[1] 0.1295176

> pbinom(q = 3, size = 10, prob = 0.3)

[1] 0.6496107

> qchisq(p = 0.95, df = 1)

[1] 3.841459



Summary

Distribution MGF PDF Mean Variance

Exponential 1
1−θt

1
θ
e−x/θ θ θ2

Gamma 1
(1−θt)α

1
Γ(α)θα

xα−1e−x/θ αθ αθ2

Chi-square 1

(1−2t)
r
2

1
Γ(r/2)2r/2 x r/2−1e−x/2 r 2r

Normal eµt+σ2 t2
2 1

σ
√

2π
e− (x−µ)2

2σ2 µ σ2


