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Multivariate distribution

In many practical cases, it is possible, and often desirable, to take more than

one measurement of a random observation. Moreover, we sometimes want

to use these measurements to predict a third one. For example, we measure

the GPA and extracurriculum activities of a student, and we give each of them

a comprehensive evaluation score.

Definition: Let X and Y be two discrete random variables. Let S denote the

two-dimensional space of X and Y . The probability that X = x and Y = y is

denoted by f (x , y) = P(X = x ,Y = y). The function f (x , y) is called the joint

probability mass function.



Joint probability mass function

Example: Roll a pair of fair dice. For each of the 36 sampling points with

probability 1/36, let X denote the smaller and Y the larger outcome on the

dice. For example, if the outcome is (3, 2), then the observed values are

X = 2, Y = 3. What is the joint PMF of X and Y?

The event X = 2, Y = 3 can happen in one of two ways (2, 3) or (3, 2). So

its probability is 2/36. However, for event such as X = 2, Y = 2, it can only

happen in one way. Thus, in general, the joint probability mass function is

f (x , y) =


1

36 x = y
1

18 x ̸= y



Multinomial distribution

Suppose we have three mutually exclusive and exhaustive ways for an

experiment to end: perfect, seconds, and defective. We repeat the

experiment n independent times and the probability pX , pY , 1 − pX − pY of

the three type of results. Let X and Y be the number of perfect and seconds.

What is the joint probability mass function of X and Y?

The probability of having x perfects, y seconds, and n − x − y defective is

px
X py

Y (1 − pX − pY )
n−x−y

And it can be achieved in

Cx
nCy

n−x =
n!

x!(n − x)!
(n − x)!

y !(n − x − y)!
=

n!
x!y !(n − x − y)!

Thus, the joint PMF is

f (x , y) =
n!

x!y !(n − x − y)!
px

X py
Y (1 − pX − pY )

n−x−y



Marginal probability mass function

Let X and Y have the joint probability mass function f (x , y) with space S.

The probability mass function of X alone is called the marginal probability

mass function of X and is defined by

fX (x) =
∑

y

f (x , y) x ∈ SX

The random variables X and Y are independent if and only if, for every

x ∈ SX and y ∈ SY ,

f (x , y) = fX (x)fY (y)

Otherwise, X ad Y are said to be dependent.



Marginal probability mass function

Example: In the dice rolling example mentioned above, what is the marginal

probability mass function of X and Y? Are X and Y independent?



Marginal probability mass function

If X and Y has a multinomial distribution, are they independent?

It is easy to see by logic that X and Y both have a binomial distribution.

fX (x) = Cx
npx

X (1 − pX )
n−x

fY (y) = Cy
npy

Y (1 − pY )
n−y

Therefore,

fX (x)fY (y) = Cx
nCy

npx
X (1 − pX )

n−x py
Y (1 − pY )

n−y ̸= f (xy)

Thus, X and Y are not indepenent.



Mathematical expectation

Let X1 and X2 be random variables of the discrete type with the joint PMF

f (x1, x2) on the space S. If u(X1,X2) is a function of these two random

variables, then

E
[
u(X1,X2)

]
=

∑∑
(x1,x2)∈S

u(x1, x2)f (x1, x2)

if it exists, is called the mathematical expectation of u(X1,X2).

If u(X1,X2) = Xi , then E [u(X1,X2)] = E(Xi) = µi ; if u(X1,X2) = (Xi − µi)
2,

then E [u(X1,X2)] = E [(Xi − µi)
2] = Var(Xi)



Mathematical expectation

Example: There are eight chips in a bow: three marked (0, 0), two marked

(1, 0), two marked (0, 1), and one marked (1, 1). A player selects a chip at

random and is given the sum of the two coordinates in dollars as a prize.

What is the expected prize money a play can get?

Let X1 and X2 denote the two coordinates. Their joint PMF is

f (x , y) =
3 − x1 − x2

8
, x1 = 0, 1 and x2 = 0, 1

Thus,

E(X1 + X2) =
1∑

x2=0

1∑
x1=0

(x1 + x2)
3 − x1 − x2

8

= (0)(
3
8
) + (1)(

2
8
) + (1)(

2
8
) + (2)(

1
8
) =

3
4



Correlation coefficient

Let u(X ,Y ) = (X − µX )(Y − µY ), then

E [u(X ,Y )] = E [(X − µX )(Y − µY )] = Cov(X ,Y ) = σXY

is called the covariance of X and Y .

ρ =
Cov(X ,Y )

σXσY
=

σXY

σXσY

is called the correlation coefficient of X and Y .

A commonly used formula to calculate covariance:

Cov(X ,Y ) = E [(X − µX )(Y − µY )]

= E(XY − µX Y − µY X + µXµY )

= E(XY )− µX E(Y )− µY E(X ) + µXµY

= E(XY )− µXµY



Correlation coefficient

Example: Let X and Y have the joint PMF

f (x , y) =
x + 2y

18
, x = 1, 2 and y = 1, 2

What is the correlation coefficient of X and Y?

The marginal PMF are respectively

fX (x) =
2∑

y=1

x + 2y
18

=
x + 3

9

fY (y) =
2∑

x=1

x + 2y
18

=
3 + 4y

18

The mean and variance of X are

µX =
2∑

x=1

x
x + 3

9
= (1)

4
9
+ (2)

5
9
=

14
9



Correlation coefficient

σ2
X = E(X 2)− µ2

X =
2∑

x=1

x2 x + 3
9

−
(

14
9

)2

=
20
81

Similarly, we get the mean and variance of Y

µY =
29
18

σ2
Y =

77
324

The covariance of X and Y

Cov(X ,Y ) =
2∑

x=1

2∑
y=1

xy
x + 2y

18
− 14

9
29
18

= (1)(1)
3

18
+ (2)(1)

4
18

+ (1)(2)
5
18

+ (2)(2)
6

18
− 14

9
29
18

= − 1
162

ρ =
Cov(X ,Y )

σXσY
= −0.025



Correlation coefficient

Proposition: If X and Y are independent, Cov(X ,Y ) = 0.

E(XY ) =
∑
SX

∑
SY

xyf (x , y)

=
∑
SX

∑
SY

xyfX (x)fY (y)

=
∑
SX

xfX (x)
∑
SY

yfY (y)

= µXµY

Thus, we have

Cov(X ,Y ) = E(XY )− µXµY = 0



Correlation coefficient

If Cov(X ,Y ) = 0, are X and Y necessarily independent?

Example: Let X and Y have the joint PMF

f (x , y) =
1
3
, (x , y) = (0, 1), (1, 0), (2, 1).

It is easy to get the marginal PMF of X and Y :

fX (x) =
1
3
, x = 0, 1, 2; fY (y) =


1
3 , y = 0
2
3 , y = 1

Thus, µX = 1 amd µY = 2/3. Then

Cov(X ,Y ) = E(XY )− µXµY

= (0)(1)
1
3
+ (1)(0)

1
3
+ (2)(1)

1
3
− (1)

2
3

= 0

It is obvious that f (x , y) ̸= fX (x)fY (y). Thus, X and Y are dependent.



Conditional distributions

Let X and Y have a joint discrete distribution with PMF f (x , y) on space S.

Say the marginal PMF are fX (x) and fY (y) respectively. Let event

A = {X = x} and event B = {Y = y}. Thus A ∩ B = {X = x ,Y = y}.

Because P(A ∩ B) = P(X = x ,Y = y) = f (x , y) and

P(B) = P(Y = y) = fY (y), the conditional probability of A given B is

P(A|B) =
P(A ∩ B)

P(B)
=

f (x , y)
fY (y)

Definition: The conditional probability mass function of X , given that Y = y ,

is defined by

g(x |y) = f (x , y)
fY (y)

provided that fY (y) > 0



Conditional distributions

Example: Let X and Y have the joint PMF

f (x , y) =
x + y

21
, x = 1, 2, 3, y = 1, 2.

Find the conditional distribution g(x |y).

We first calculate marginal PMF of y :

fY (y) =
3∑

x=1

x + y
21

=
y + 2

7
, y = 1, 2

Thus, the conditional PMF of X given Y is

g(x |y) = f (x , y)
fY (y)

=
(x + y)/21
(y + 2)/7

=
x + y
3y + 6



Conditional distribution

Similar to conditional probability, we can visualize the joint, marginal, and

conditional PMF.

(Graphic illustration of joint, marginal and conditional PMF.)



Conditional expectation

Because conditional PMF is a PMF, we thus can define conditional

expectation the same way we define mathematical expectation:

E
[
u(Y )|X = x

]
=

∑
y

u(y)g(y |x)

Conditional mean and conditional variance are defined by

µY |X = E(Y |X ) =
∑

y

yg(y |x)

σ2
Y |X = E

[
(Y − µY |X )

2|X
]
=

∑
y

(y − µY |X )
2g(y |x)



Conditional expectation

Example: Let X and Y have a multinomial PMF with parameters n, pX , and

pY . That is,

f (x , y) =
n!

x!y !(n − x − y)!
px

X py
Y (1 − px − pY )

n−x−y

What is the conditional mean of X given Y?

We know that the marginal distribution of Y is binomial,. i.e.,

fY (y) =
n!

y !(n − y)!
py

Y (1 − pY )
n−y

Thus, the conditional PMF of X given Y is

g(x |y) = f (x , y)
fY (y)

=
(n − y)!

x!(n − y − x)!
(

pX

1 − pY
)x(1 − pX

1 − pY
)n−y−x

This is a binomial distribution with parameters n − y and pX
1−pY

. Thus, the

conditional mean is (n − y) pX
1−pY

.



Multivariate distribution of continuous random variables

The idea of joint distributions of discrete random variables can be extended to

that of continuous random variables. The joint probability density function

of two continuous random variables is an integrable function f (x , y) such that

• f (x , y) ⩾ 0, where f (x , y) = 0 when (x , y) is not in the space of X and Y ;

•
∫ ∞

−∞

∫ ∞

−∞
f (x , y)dxdy = 1;

• P(X ,Y ) ∈ A =

∫ ∫
A

f (x , y)dxdy



Multivariate distribution of continuous random variables

The marginal probability density function of X and Y are given by

fX (x) =
∫ ∞

−∞
f (x , y)dy , x ∈ SX ;

fY (y) =
∫ ∞

−∞
f (x , y)dx , y ∈ SY ;

X and Y are independent if and only if f (x , y) = fX (x)fY (y)



Multivariate distribution of continuous random variables

The correlation coefficient of two continuous random variables X and Y is

defined in the same way as the discrete random variables as

ρ =
Cov(X ,Y )

σXσY
=

σXY

σXσY

The Conditional probability density function of X , given that Y = y , is

f (x |y) = f (x , y)
fY (y)

,

provided that fY (y) > 0.



Multivariate distribution of continuous random variables

Example: Let X and Y have the joint PDF

f (x , y) = 1, x ⩽ y ⩽ x + 1, 0 ⩽ x ⩽ 1.

Find the marginal PDF and the correlation coefficient of X and Y .

The marginal PDFs of X and Y are

fX (x) =
∫ x+1

x
1dy = 1, 0 ⩽ x ⩽ 1

fY (y) =



∫ y

0
1dx = y , 0 ⩽ y ⩽ 1,

∫ 1

y−1
1dx = 2 − y , 1 ⩽ y ⩽ 2.



Multivariate distribution of continuous random variables

The mean and variance of X and Y are

µX =

∫ 1

0
x · 1dx =

1
2

µY =

∫ 1

0
y · ydy +

∫ 2

1
y · (2 − y)dy =

1
3
+

2
3
= 1

E(X 2) =

∫ 1

0
x2 · 1dx =

1
3

E(Y 2) =

∫ 1

0
y2 · ydy +

∫ 2

1
y2 · (2 − y)dy =

7
6

E(XY ) =

∫ 1

0

∫ x+1

x
xy · 1dydx =

∫ 1

0

1
2

x(2x + 1)dx =
7

12



Multivariate distribution of continuous random variables

σ2
X =

1
3
−

(1
2

)2
=

1
12

σ2
Y =

7
6
− 12 =

1
6

σXY =
7
12

−
(1

2

)
(1) =

1
12

Therefore, the correlation coefficient is

ρ =
σXY

σXσY
=

1/12√
(1/12)(1/6)

=

√
2

2



Multivariate normal distribution

A very commonly used multivariate distribution is the multivariate normal

distribution. Random variables X and Y have a bivariate normal distribution if

its joint PDF is

f (x , y) =
1

2πσXσY
√

1 − ρ2
exp

[
− q(x , y)

2

]
,

where

q(x , y) =
1

1 − ρ2

[(x − µx

σX

)2
− 2ρ

(x − µX

σX

)(y − µY

σY

)
+

(y − µY

σY

)2]
Here, µX and µY are the mean of X and Y , σX and σY are the standard

deviation of X and Y , and ρ is the correlation coefficient.



Multivariate normal distribution

A bivariate normal distribution has a typical PDF figure as follows.



Multivariate normal distribution

If random variables X and Y have a bivariate normal distribution, then the

marginal distribution of X and Y are both normal.

q(x , y) =
1

1 − ρ2

[(x − µx

σX

)2
− 2ρ

(x − µX

σX

)(y − µY

σY

)
+

(y − µY

σY

)2]
=

1
1 − ρ2

[(x − µX

σX
− ρ

y − µY

σY

)2
+ (1 − ρ2)

(y − µY

σY

)2]
=

1
σ2

X (1 − ρ2)

(
x − µX − ρ

σX

σY
(y − µY )

)2
+

(y − µY

σY

)2



Multivariate normal distribution

Thus, the marginal distribution of Y is

fY (y) =
∫ ∞

−∞
f (x , y)dx =

∫ ∞

−∞

1
2πσXσY

√
1 − ρ2

exp
[
− q(x , y)

2

]
dx

=
1

2πσXσY
√

1 − ρ2
exp

[
− (y − µY )

2

2σ2
Y

]
∫ ∞

−∞
exp

[
− 1

2σ2
X (1 − ρ2)

(
x − µX − ρ

σX

σY
(y − µY )

)2]
dx

=
1

2πσXσY
√

1 − ρ2
exp

[
− (y − µY )

2

2σ2
Y

]
(σX

√
2π

√
1 − ρ2)

=
1

σY
√

2π
exp

[
− (y − µY )

2

2σ2
Y

]
Thus, the marginal distribution of Y is N(µY , σ

2
Y ). Using the procedure, it is

obvious that X ∼ N(µX , σ
2
X ).



Multivariate normal distribution

If If random variables X and Y have a bivariate normal distribution, then the

conditional distribution of X given Y is normal.

The joint PDF is

f (x , y) =
1

2πσXσY
√

1 − ρ2
exp

[
− q(x , y)

2

]
,

where

q(x , y) =
1

σ2
X (1 − ρ2)

(
x − µX − ρ

σX

σY
(y − µY )

)2
+

(y − µY

σY

)2

The marginal PDF of Y is

fY (y) =
1

σY
√

2π
exp

[
− (y − µY )

2

2σ2
Y

]



Multivariate normal distribution

The conditional distribution of X given Y is thus

g(x |y) = f (x , y)
fY (y)

=
1

σX
√

2π
√

1 − ρ2
exp

[
− [x − µX − ρ(σX/σY )(y − µY )]

2

2σ2
X (1 − ρ2)

]
Thus, g(x |y) is N

(
µX + ρσX

σY
(y − µY ), (1 − ρ2)σ2

X

)
.

(Illustration of conditional distribution of a bivariate normal distribution)



Multivariate normal distribution

We can extend the case of bivariate normal distribution to more than two

variables. For more k variables, we write the PDF of a multivariate normal

distribution in matrix notation:

f (x) =
1√

(2π)k |Σ|
exp

(
− 1

2
(x − µ)TΣ−1(x − µ)

)
where x and µ are column vectors of the variables and its means, Σ is the

k × k variance covariance matrix, i.e.,

x =


x1

x2

...

xk

 ; µ =


µ1

µ2

...

µk

 ; Σ =


σ2

X1
σX1X2 · · · σX1Xk

σX1X1 σ2
X2

· · · σX2Xk

...
...

...

σXk X1 σ2
Xk X2

· · · σ2
Xk




