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Multivariate distribution

In many practical cases, it is possible, and often desirable, to take more than

one measurement of a random observation. Moreover, we sometimes want

to use these measurements to predict a third one. For example, we measure

the GPA and extracurriculum activities of a student, and we give each of them

a comprehensive evaluation score.

Definition: Let X and Y be two discrete random variables. Let S denote the

two-dimensional space of X and Y . The probability that X = x and Y = y is

denoted by f (x , y) = P(X = x ,Y = y). The function f (x , y) is called the joint

probability mass function.



Joint probability mass function

Example: Roll a pair of fair dice. For each of the 36 sampling points with

probability 1/36, let X denote the smaller and Y the larger outcome on the

dice. For example, if the outcome is (3, 2), then the observed values are

X = 2, Y = 3. What is the joint PMF of X and Y ?

The event X = 3, Y = 3 can happen in one of two ways (2, 3) or (3, 2). So

its probability is 2/36. However, for event such as X = 2, Y = 2, it can only

happen in one way. Thus, in general, the joint probability mass function is

f (x , y) =


1

36 x = y
1

18 x ̸= y



Multinomial distribution

Suppose we have three mutually exclusive and exhaustive ways for an

experiment to end: perfect, seconds, and defective. We repeat the

experiment n independent times and the probability pX , pY , 1 − pX − pY of

the three type of results. Let X and Y be the number of perfect and seconds.

What is the joint probability mass function of X and Y?

The probability of having x perfects, y seconds, and n − x − y defective is

px
X py

Y (1 − pX − pY )
n−x−y

And it can be achieved in

Cx
nCy

n−x =
n!

x!(n − x)!
(n − x)!

y !(n − x − y)!
=

n!
x!y !(n − x − y)!

Thus, the joint PMF is

f (x , y) =
n!

x!y !(n − x − y)!
px

X py
Y (1 − pX − pY )

n−x−y



Marginal probability mass function

Let X and Y have the joint probability function f (x , y) with space S. The

probability mass function of X alone is called the marginal probability mass

function of X and is defined by

fX (x) =
∑

y

f (x , y) x ∈ SX

The random variables X and Y are independent if and only if, for every

x ∈ SX and y ∈ SY ,

f (x , y) = fX (x)fY (y)

Otherwise, X ad Y are said to be dependent.



Marginal probability mass function

Example: In the dice rolling example mentioned above, what is the marginal

probability mass function of X and Y ? Are X and Y independent?



Marginal probability mass function

If X and Y has a multinomial distribution, are they independent?

It is easy to see by logic that X and Y both have a binomial distribution.

fX (x) = Cx
npx

X (1 − pX )
n−x

fY (y) = Cy
npy

Y (1 − pY )
n−y

Therefore,

fX (x)fY (y) = Cx
nCy

npx
X (1 − pX )

n−x py
Y (1 − pY )

n−y ̸= f (xy)

Thus, X and Y are not indepenent.



Mathematical expectation

Let X1 and X2 be random variables of the discrete type with the joint PMF

f (x1, x2) on the space S. If u(X1,X2) is a function of these two random

variables, then

E
[
u(X1,X2)

]
=

∑∑
(x1,x2)∈S

u(x1, x2)f (x1, x2)

if it exists, is called the mathematical expectation of u(X1,X2).

If u(X1,X2) = Xi , then E [u(X1,X2)] = E(Xi) = µi ; if u(X1,X2) = (Xi − µi)
2,

then E [u(X1,X2)] = E [(Xi − µi)
2] = Var(Xi)



Mathematical expectation

Example: There are eight chips in a bow: three marked (0, 0), two marked

(1, 0), two marked (0, 1), and one marked (1, 1). A player selects a chip at

random and is given the sum of the two coordinates in dollars as a prize.

What is the expected prize money a play can get?

Let X1 and X2 denote the two coordinates. Their joint PMF is

f (x , y) =
3 − x1 − x2

8
, x1 = 0, 1 and x2 = 0, 1

Thus,

E(X1 + X2) =
1∑

x2=0

1∑
x1=0

(x1 + x2)
3 − x1 − x2

8

= (0)(
3
8
) + (1)(

2
8
) + (1)(

2
8
) + (2)(

1
8
) =

3
4



Correlation coefficient

Let u(X ,Y ) = (X − µX )(Y − µY ), then

E [u(X ,Y )] = E [(X − µX )(Y − µY )] = Cov(X ,Y ) = σXY

is called the covariance of X and Y .

ρ =
Cov(X ,Y )

σXσY
=

σXY

σXσY

is called the correlation coefficient of X and Y .

A commonly used formula to calculate covariance:

Cov(X ,Y ) = E [(X − µX )(Y − µY )]

= E(XY − µX Y − µY X + µXµY )

= E(XY )− µX E(Y )− µY E(X ) + µXµY

= E(XY )− µXµY



Correlation coefficient

Example: Let X and Y have the joint PMF

f (x , y) =
x + 2y

18
, x = 1, 2 and y = 1, 2

What is the correlation coefficient of X and Y ?

The marginal PMF are respectively

fX (x) =
2∑

y=1

x + 2y
18

=
x + 3

9

fY (y) =
2∑

x=1

x + 2y
18

=
3 + 4y

18

The mean and variance of X are

µX =
2∑

x=1

x
x + 3

9
= (1)

4
9
+ (2)

5
9
=

14
9



Correlation coefficient

σ2
X = E(X 2)− µ2

X =
2∑

x=1

x2 x + 3
9

−
(

14
9

)2

=
20
81

Similarly, we get the mean and variance of Y

µY =
29
18

σ2
Y =

77
324

The covariance of X and Y

Cov(X ,Y ) =
2∑

x=1

2∑
y=1

xy
x + 2y

18
− 14

9
29
18

= (1)(1)
3

18
+ (2)(1)

4
18

+ (1)(2)
5
18

+ (2)(2)
6

18
− 14

9
29
18

= − 1
162

ρ =
Cov(X ,Y )

σXσY
= −0.025



Correlation coefficient

Proposition: If X and Y are independent, Cov(X ,Y ) = 0.

E(XY ) =
∑
SX

∑
SY

xyf (x , y)

=
∑
SX

∑
SY

xyfX (x)fY (y)

=
∑
SX

xfX (x)
∑
SY

yfY (y)

= µXµY

Thus, we have

Cov(X ,Y ) = E(XY )− µXµY = 0



Correlation coefficient

If Cov(X ,Y ) = 0, are X and Y necessarily independent?

Example: Let X and Y have the joint PMF

f (x , y) =
1
3
, (x , y) = (0, 1), (1, 0), (2, 1).

It is easy to get the marginal PMF of X and Y :

fX (x) =
1
3
, x = 0, 1, 2; fY (y) =


1
3 , y = 0
2
3 , y = 1

Thus, µX = 1 amd µY = 2/3. Then

Cov(X ,Y ) = E(XY )− µXµY

= (0)(1)
1
3
+ (1)(0)

1
3
+ (2)(1)

1
3
− (1)

2
3

= 0

It is obvious that f (x , y) ̸= fX (x)fY (y). Thus, X and Y are dependent.


