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Conditional distributions

Let X and Y have a joint discrete distribution with PMF f (x , y) on space S.

Say the marginal PMF are fX (x) and fY (y) respectively. Let event

A = {X = x} and event B = {Y = y}. Thus A ∩ B = {X = x ,Y = y}.

Because P(A ∩ B) = P(X = x ,Y = y) = f (x , y) and

P(B) = P(Y = y) = fY (y), the conditional probability of A given B is

P(A|B) =
P(A ∩ B)

P(B)
=

f (x , y)
fY (y)

Definition: The conditional probability mass function of X , given that Y = y ,

is defined by

g(x |y) = f (x , y)
fY (y)

provided that fY (y) > 0



Conditional distributions

Example: Let X and Y have the joint PMF

f (x , y) =
x + y

21
, x = 1, 2, 3, y = 1, 2.

Find the conditional distribution g(x |y).

We first calculate marginal PMF of y :

fY (y) =
3∑

x=1

x + y
21

=
y + 2

7
, y = 1, 2

Thus, the conditional PMF of X given Y is

g(x |y) = f (x , y)
fY (y)

=
(x + y)/21
(y + 2)/7

=
x + y
3y + 6



Conditional distribution

Similar to conditional probability, we can visualize the joint, marginal, and

conditional PMF.

(Graphic illustration of joint, marginal and conditional PMF.)



Conditional expectation

Because conditional PMF is a PMF, we thus can define conditional

expectation the same way we define mathematical expectation:

E
[
u(Y )|X = x

]
=

∑
y

u(y)g(y |x)

Conditional mean and conditional variance are defined by

µY |X = E(Y |X ) =
∑

y

yg(y |x)

σ2
Y |X = E

[
(Y − µY |X )

2|X
]
=

∑
y

(y − µY |X )
2g(y |x)



Conditional expectation

Example: Let X and Y have a multinomial PMF with parameters n, pX , and

pY . That is,

f (x , y) =
n!

x!y !(n − x − y)!
px

X py
Y (1 − px − pY )

n−x−y

What is the conditional mean of X given Y ?

We know that the marginal distribution of Y is binomial,. i.e.,

fY (y) =
n!

y !(n − y)!
py

Y (1 − pY )
n−y

Thus, the conditional PMF of X given Y is

g(x |y) = f (x , y)
fY (y)

=
(n − y)!

x!(n − y − x)!
(

pX

1 − pY
)x(1 − pX

1 − pY
)n−y−x

This is a binomial distribution with parameters n − y and pX
1−pY

. Thus, the

conditional mean is (n − y) pX
1−pY

.



Multivariate distribution of continuous random variables

The idea of joint distributions of discrete random variables can be extended to

that of continuous random variables. The joint probability density function

of two continuous random variables is an integrable function f (x , y) such that

• f (x , y) ⩾ 0, where f (x , y) = 0 when (x , y) is not in the space of X and Y ;

•
∫ ∞

−∞

∫ ∞

−∞
f (x , y)dxdy = 1;

• P(X ,Y ) ∈ A =

∫ ∫
A

f (x , y)dxdy



Multivariate distribution of continuous random variables

The marginal probability density function of X and Y are given by

fX (x) =
∫ ∞

−∞
f (x , y)dy , x ∈ SX ;

fY (y) =
∫ ∞

−∞
f (x , y)dx , y ∈ SY ;

X and Y are independent if and only if f (x , y) = fX (x)fY (y)



Multivariate distribution of continuous random variables

The correlation coefficient of two continuous random variables X and Y is

defined in the same way as the discrete random variables as

ρ =
Cov(X ,Y )

σXσY
=

σXY

σXσY

The Conditional probability density function of X , given that Y = y , is

f (x |y) = f (x , y)
fY (y)

,

provided that fY (y) > 0.



Multivariate distribution of continuous random variables

Example: Let X and Y have the joint PDF

f (x , y) = 1, x ⩽ y ⩽ x + 1, 0 ⩽ x ⩽ 1.

Find the marginal PDF and the correlation coefficient of X and Y .

The marginal PDFs of X and Y are

fX (x) =
∫ x+1

x
1dy = 1, 0 ⩽ x ⩽ 1

fY (y) =



∫ y

0
1dx = y , 0 ⩽ y ⩽ 1,

∫ 1

y−1
1dx = 2 − y , 1 ⩽ y ⩽ 2.



Multivariate distribution of continuous random variables

The mean and variance of X and Y are

µX =

∫ 1

0
x · 1dx =

1
2

µY =

∫ 1

0
y · ydy +

∫ 2

1
y · (2 − y)dy =

1
3
+

2
3
= 1

E(X 2) =

∫ 1

0
x2 · 1dx =

1
3

E(Y 2) =

∫ 1

0
y2 · ydy +

∫ 2

1
y2 · (2 − y)dy =

7
6

E(XY ) =

∫ 1

0

∫ x+1

x
xy · 1dydx =

∫ 1

0

1
2

x(2x + 1)dx =
7

12



Multivariate distribution of continuous random variables

σ2
X =

1
3
−

(1
2

)2
=

1
12

σ2
Y =

7
6
− 12 =

1
6

σXY =
7
12

−
(1

2

)
(1) =

1
12

Therefore, the correlation coefficient is

ρ =
σXY

σXσY
=

1/12√
(1/12)(1/6)

=

√
2

2



Multivariate normal distribution

A very commonly used multivariate distribution is the multivariate normal

distribution. Random variables X and Y have a bivariate normal distribution if

its joint PDF is

f (x , y) =
1

2πσXσY
√

1 − ρ2
exp

[
− q(x , y)

2

]
,

where

q(x , y) =
1

1 − ρ2

[(x − µx

σX

)2
− 2ρ

(x − µX

σX

)(y − µY

σY

)
+

(y − µY

σY

)2]
Here, µX and µY are the mean of X and Y , σX and σY are the standard

deviation of X and Y , and ρ is the correlation coefficient.



Multivariate normal distribution

If random variables X and Y have a bivariate normal distribution, then the

marginal distribution of X and Y are both normal.

q(x , y) =
1

1 − ρ2

[(x − µx

σX

)2
− 2ρ

(x − µX

σX

)(y − µY

σY

)
+

(y − µY

σY

)2]
=

1
1 − ρ2

[(x − µX

σX
− ρ

y − µY

σY

)2
+ (1 − ρ2)

(y − µY

σY

)2]
=

1
σ2

X (1 − ρ2)

(
x − µX − ρ

σX

σY
(y − µY )

)2
+

(y − µY

σY

)2



Multivariate normal distribution

Thus, the marginal distribution of Y is

fY (y) =
∫ ∞

−∞
f (x , y)dx =

∫ ∞

−∞

1
2πσXσY

√
1 − ρ2

exp
[
− q(x , y)

2

]
dx

=
1

2πσXσY
√

1 − ρ2
exp

[
− (y − µY )

2

2σ2
Y

]
∫ ∞

−∞
exp

[
− 1

2σ2
X (1 − ρ2)

(
x − µX − ρ

σX

σY
(y − µY )

)2]
dx

=
1

2πσXσY
√

1 − ρ2
exp

[
− (y − µY )

2

2σ2
Y

]
(σX

√
2π

√
1 − ρ2)

=
1

σY
√

2π
exp

[
− (y − µY )

2

2σ2
Y

]
Thus, the marginal distribution of Y is N(µY , σ

2
Y ). Using the procedure, it is

obvious that X ∼ N(µX , σ
2
X ).



Multivariate normal distribution

If If random variables X and Y have a bivariate normal distribution, then the

conditional distribution of X given Y is normal.

The joint PDF is

f (x , y) =
1

2πσXσY
√

1 − ρ2
exp

[
− q(x , y)

2

]
,

where

q(x , y) =
1

σ2
X (1 − ρ2)

(
x − µX − ρ

σX

σY
(y − µY )

)2
+

(y − µY

σY

)2

The marginal PDF of Y is

fY (y) =
1

σY
√

2π
exp

[
− (y − µY )

2

2σ2
Y

]



Multivariate normal distribution

The conditional distribution of X given Y is thus

g(x |y) = f (x , y)
fY (y)

=
1

σX
√

2π
√

1 − ρ2
exp

[
− [x − µX − ρ(σX/σY )(y − µY )]

2

2σ2
X (1 − ρ2)

]
Thus, g(x |y) is N

(
µX + ρσX

σY
(y − µY ), (1 − ρ2)σ2

X

)
.

(Illustration of conditional distribution of a bivariate normal distribution)


