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Transformation of discrete random variables

A problem often encountered in statistics is the following. We have a random

variable X and we know its distribution. We are interested in a random

variable Y which is some transformation of X , say Y = g(X ). We want to

determine the distribution of Y .

Let X be the number of trials until we get the first success. Let p be the

probability of success. The probability mass function of X is thus

P(X = x) = p(1 − p)x−1. Let Y = X − 1, i.e., Y is the number of failures

before first success. What is the PMF of Y ?

P(Y = y) = P(X − 1 = y) = P(X = y + 1)

= p(1 − p)y−1+1 = p(1 − p)y

In general, for discrete random variable, we can directly use the probability

mass function of the original random variable to derive the probability mass

function of the transformed random variable.



Transformation of continuous random variables

Recall the theorem about standard normal distribution. If X ∼ N(µ, σ2), then

Z = x−µ
σ

is N(0, 1). Why is this the case?

Proof: The cumulative distribution function of Z is

P(Z ⩽ z) = P(
X − µ

σ
⩽ z) = P(X ⩽ zσ + µ)

=

∫ zσ+µ

−∞

1
σ
√

2π
e− (x−µ)2

2σ2 dx

We now use the change of variable integration given by w = (x − µ)/σ (i.e.,

x = wσ + µ) to obtain

P(Z ⩽ z) =
∫ z

−∞

1√
2π

e− w2
2 dw



Transformation of continuous random variables

Theorem: Let X be a continuous random variable with PDF fX (x) and

support SX . Let Y = g(x), where g(x) is a one-to-one differentiable function,

on the support of X. Denote the inverse of g by x = g−1(y) and let

dx/dy = d [g−1(y)]. Then the PDF of Y is given by

fY (y) = fX (g−1(y))
∣∣∣∣dx
dy

∣∣∣∣
Proof: Since g(x) is one-to-one and continuous, it is either monotonically

increasing or decreasing. When it is strictly monotonically increasing, the

CDF for Y is

FY (y) = P(Y ⩽ y) = P(g(x) ⩽ y) = P(x ⩽ g−1(y)) = FX (g−1(y))

Hence the PDF of Y is

fY (y) =
dFY (y)

dy
= fX (g−1(y))

dx
dy

= fX (g−1(y))
∣∣∣∣dx
dy

∣∣∣∣



Transformation of continuous random variables

Similarly, when g(x) is monotonically decreasing,

FY (y) = P(Y ⩽ y) = P(g(x) ⩽ y) = P(x ⩾ g−1(y)) = 1 − FX (g−1(y))

Hence the PDF of Y is

fY (y) =
dFY (y)

dy
= −fX (g−1(y))

dx
dy

= fX (g−1(y))
∣∣∣∣dx
dy

∣∣∣∣



Log-normal distribution

Let X ∼ N(µ, σ2), then Y = eX has a log-normal distribution.

Proof: When Y = eX , we have X = ln(Y ). Using the general conclusions

about transformation of continuous random variable, the PDF of Y is

fY (y) = fX (ln(y))|
dx
dy

|

=
1

σ
√

2π
e− (ln(y)−µ)2

2σ2

∣∣∣∣d ln(y)
dy

∣∣∣∣
=

1
σy

√
2π

e− (ln(y)−µ)2

2σ2



Log-normal distribution

Let X ∼ N(µ, σ2), then Y = eX has a log-normal distribution. What is the

mean and variance of Y?

E(Y ) =

∫ ∞

0
yfY (y)dy =

∫ ∞

0
y

1
σy

√
2π

e− (ln(y)−µ)2

2σ2 dy

For convenience of integration, use change of variable t = (ln(y)− µ)/σ so

that y = eσt+µ and dy = σeσt+µdt , we have

E(Y ) =

∫ ∞

−∞

1
σ
√

2π
e− 1

2 t2
σeσt+µdt

= eµ+ 1
2 σ

2
∫ ∞

−∞

1√
2π

e− (t−σ)2

2 dt

= eµ+ 1
2 σ

2

Similarly, we could calculate the variance of Y to be

Var(Y ) = (eσ2
− 1)e2µ+σ2

.



Log-normal distribution

If X ∼ N(µ, σ2), then Y = eX has a log-normal distribution with mean eµ+ 1
2 σ

2

and variance (eσ2
− 1)e2µ+σ2

.

Note that if X ∼ N(µ, σ2), then the mean of Y = eX is not eµ because eX is

a non-linear transformation.



Chi-square distribution

Let X follows a standard normal distribution. Find the PDF of Y = X 2

FY (y) = P(Y ⩽ y) = P(X 2 ⩽ y) = P(−
√

y ⩽ X ⩽
√

y)

= FX (
√

y)− FX (−
√

y)

=

∫ √
y

−∞

1√
2π

e− y2
2 dy −

∫ −√
y

−∞

1√
2π

e− y2
2 dy

Thus, the PDF of Y is

fY (y) =
dFY (y)

dy
=

1√
2πy

e− y
2

This is the PDF of a chi-square distribution with 1 degree of freedom.



Universality of the uniform

Let X be a continuous random variable and FX (x) be its cumulative

distribution function. What is the PDF of Y = FX (x)?

Using the method of distribution function, we have

FY (y) = P(Y ⩽ y) = P(FX (x) ⩽ y) = P(x ⩽ F−1
X (y))

= FX (F−1
X (y)) = y

Thus, the PDF of Y is

fY (y) =
d
dy

FY (y) = 1



Universality of the uniform

Theorem: For a continuous random variable X , its cumulative distribution

function FX (x) follows a uniform distribution between 0 and 1, U(0, 1)

Corollary: The fact that cumulative distribution function is U(0, 1) provides a

universal way to simulate continuous random variable. Specifically, one can

draw random numbers from U(0, 1) and then compute any random variable

by the inverse of its cumulative distribution function.



Order statistics

Definition: Let X1,X2, . . . ,Xn be a random sample from a distribution. Let

X(1),X(2), . . . ,X(n) be the random variables sorted from the smallest to the

largest. We call X(j) the j th order statistics of the random sample. We use f(j)
and F(j) to denote its PDF and CDF respectively

Let X(1),X(2), . . . ,X(n) be the order statistics of a random sample from a

distribution. What is the probability density function of the maximum X(n)?

F(n)(x) = P(X(n) ⩽ x) = P(X1 ⩽ x , . . .Xn ⩽ x)

=
n∏

i=1

P(Xi ⩽ x) = FX (x)n

fn(x) =
d
dx

F(n)(x) = nFX (x)n−1fX (x)



Order statistics

Let X(1),X(2), . . . ,X(n) be the order statistics of a random sample from a

distribution. What is the probability density function of the minimum X(1)?

F(1)(x) = P(X(1) ⩽ x) = 1 − P(X(1) > x)

= 1 − P(X1 > x , . . . ,Xn > x)

= 1 −
n∏

i=1

P(Xi > x)

= 1 −
n∏

i=1

(1 − P(Xi ⩽ x))

= 1 − (1 − FX (x))n

f(1)(x) =
d
dx

F(1)(x) = n(1 − FX (x))n−1fX (x)



Method of moment generating function

Theorem: Let X and Y be random variables with moment generating

functions mX (t) and mY (t). if X and Y are independent, the moment

generating function of aX + bY is

maX+bY (t) = mX (at)mY (bt)

Proof: According to the definition of moment generating function:

maX+bY (t) = E(e(aX+bY )t) = E(eaXt+bYt) = E(eXateYbt)

Because X and Y are independent, E(eXteYt) = E(eXat)E(eYbt). Thus

maX+bY (t) = mX (at)mY (bt)



Methods of moment generating function

Because moment generating functions uniquely identifies a distribution. We

can use the moment generating function to find the distribution of a

transformed random variable.

Example: Recall that the moment generating function of X ∼ N(µ, σ2) is

mX (t) = eµte
1
2 σ

2t2
. If X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2) are independent,

what is the distribution of X1 + X2?

mX1+X2(t) = mX1(t)mX2(t)

= eµ1te
1
2 σ

2
1 t2

eµ2te
1
2 σ

2
2 t2

= e(µ1+µ2)te
1
2 (σ

2
1+σ2

2)t
2

This is the moment generating function of a normal distribution with mean

µ1 + µ2 and variance σ2
1 + σ2

2 .



Methods of moment generating function

Theorem: if X1, . . . ,Xn are mutually independent normal variables with mean

µi and variance σ2
i , then the linear function

Y =
n∑

i=1

ciXi

has the normal distribution

N
( n∑

i=1

ciµi ,

n∑
i=1

c2
i σ

2
i

)

Theorem: if X1,X2, . . . ,Xn are observations of a random sample of size n

from the normal distribution N(µ, σ2), then the sample mean

X =
1
n

n∑
i=1

Xi ∼ N
(
µ,

σ2

n

)



Method of moment generating function

If X1 and X2 are independent Poisson distributed random variables with

parameters λ1 and λ2, what is the distribution of X1 + X2?

The MGF of a Poisson random variable is m(t) = eλ(et−1). Thus,

mX1+X2(t) = mX1(t)mX2(t)

= eλ1(e
t−1)eλ2(e

t−1)

= e(λ1+λ2)(e
t−1)

Theorem: If X1 and X2 are independent Poisson distributed random variables

with parameters λ1 and λ2, then X1 + X2 follows a Poisson distribution with

parameter λ1 + λ2.


