
Lecture 1
Theory of Linear Models

Chao Song

College of Ecology
Lanzhou University

July 15, 2025



Essential tasks of statistics

Parameter estimation and hypothesis testing are two essential tasks of

statistics. Roughly speaking, parameter estimates tells us what the value of a

parameter could be and hypothesis testing aims at reaching a decision about

whether or not we reject a hypothesis about the value of the parameter.



Deterministic and probabilistic model

While deterministic models are common in physics and mathematics, it is

rarely applicable in ecology.

• Contexts that influence the dependent variable may vary;

• We usually cannot measure things without error.

Often, we encounter data that are noisy. The average of Y seems to change

with X but a deterministic relationship cannot exactly fit the data.



Deterministic and probabilistic model

In these scenarios, statisticians use probabilistic models. For example, we

may represent the data in the previous figure by the model

E(Y ) = β0 + β1X

Each observation deviates from the mean by an unknown random error

Yi = β0 + β1Xi + εi

where ε is a unknown random error. We often further assume that it possess

a specified probability distribution with mean 0.



Deterministic and probabilistic model

In the model Y = β0 + β1X + ε, we assume that there is a population of

possible values of Y for a particular value of X . The distribution has a mean

that is predicted by the deterministic part of the model, i.e., β0 + β1X . The

observation deviates from the mean by the random component ε.



Linear models

Definition: A linear model relating a random response Y to a set of

independent variables X1,X2, . . . ,Xk is of the form

Y = β0 + β1X1 + · · ·+ βk Xk + ε

where β0, β1, . . . , βk are unknown parameters, ε is a random variable and the

variables X1,X2, . . . ,Xk assume known value. We will assume E(ε) = 0 and

hence that

E(Y ) = β0 + β1X1 + · · ·+ βk Xk

The term “linear” means that the mean of dependent variable E(Y ) is a linear

function of the unknown parameters β0, β1, . . . , βk . It is not necessarily a

linear function of X . For example, Y = β0 + β1X + β2X 2 or Y = β0 + β1 ln(X )

are also a linear model.



Linear model

If the model is of the form Y = β0 + β1X , where X is a continuous variable,

the model is a simple linear regression. If the model contains multiple

continuous independent variables, the model is called multiple linear

regression. Below is an example of multiple linear regression:



The method of least square

How do we estimate parameter in a linear model?

Intuitively, we want to fit a line through the data and we want the difference

between the observed values and the corresponding points on the fitted line

to be “small” in some overall sense.



The method of least square

A convenient way to accomplish this, and one that yields estimators with

good properties, is to minimize the sum of squares of the vertical deviations

from the fitted line. This method is called the method of least squares.

Graphic illustration of the method of least squares



Method of least squares

In a simple linear regression Y = β0 + β1X , let β̂0 and β̂1 be the estimates of

model parameters, and ŷi = β̂0 + β̂1xi denotes the predicted value of yi based

on the regression. The sum of squares of deviations to be minimized is

SSE =
n∑

i=1

(yi − ŷi)2 =
n∑

i=1

[
yi − (β̂0 + β̂1xi)

]2

The solution to the least square equations are

β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
=

Sxy

Sxx

β̂0 = y − β̂1x



Properties of least square estimators

We have the following properties of the least square estimators:

• The least square estimators β̂0 and β̂1 are unbiased;

• Var(β̂0) = c00σ
2, where c00 =

∑
x2

i /nSxx ;

• Var(β̂1) = c11σ
2, where c11 = 1/Sxx ;

• Cov(β̂0, β̂1) = c01σ
2, where c01 − x/Sxx

• s2 = SSE/(n − 2) is an unbiased estimator for σ2.

All these properties are derived based on the assumption that we have a

linear model yi = β0 + β1xi + εi , where E(εi) = 0 and are independent.

These properties do not require any distributional assumption about εi .



Properties of least square estimators

If we further assume that εi ∼ N(0, σ2), then

• Both β̂0 and β̂1 are normally distributed;

• The random variable (n − 2)s2/σ2 has χ2(n − 2);

• The statistic s2 = SSE/(n − 2) is independent of both β̂0 and β̂1.



Inferences concerning the parameters βi

In a linear regression, if the random error ε is normally distributed, we can

show that β̂i is an unbiased, normally distributed estimator of βi with

Var(β̂0) = c00σ
2, c00 =

∑n
i=1 x2

i

nSxx

Var(β̂1) = c11σ
2, c11 =

1
Sxx

For each β̂i , we thus have

β̂i − βi√
ciiσ

∼ N(0, 1)

We have also shown s2 = SSE/(n − 2) is independent of β̂i and that

(n − 2)s2

σ2 ∼ χ2(n − 2)



Inferences concerning the parameters βi

This allows us to construct a test statistics for H0: βi = βi0:

T =
β̂i − βi0√

ciiσ

/√
(n − 2)s2

σ2

/
(n − 2)

=
β̂i − βi0√

ciis
∼ t(n − 2)

This result also suggests that we can construct 100(1 − α)% confidence

interval for βi as:

β̂i ± tα/2(n − 2)s
√

cii



Inferences concerning the parameters βi

The t-test for each βi can also be done based on F-distribution as

(β̂i−βi0)
2

ciiσ
2 /1

(n−2)s2

σ2 /(n − 2)
=

SSH/1
SSE/(n − 2)

∼ F1,n−2

Here, we refer to (β̂i−βi0)
2

cii
as SSH and (n − 2)s2 as SSE . The F test statistic

is constructed from the so called “sum of squares”. This is an important

concept in hypothesis testing in linear models.

While t-test can be used to test hypothesis concerning a single parameter,

F-test constructed from various “sum of squares” provides a general way of

hypothesis testing in linear models.



Inferences concerning linear functions of parameters

In addition to making inference about a single βi , we frequently are interested

in linear functions of model parameters. For example, we may wish to make

inference about

θ = a0β0 + a1β1

Because β̂i are all normally distributed, θ̂ as a linear function of β̂i also has a

normal distribution. This allows us to construct a t statistic for testing H0:

θ = θ0 as

T =

θ̂−θ0√
cθσ√

(n−2)s2

σ2 /(n − 2)
=

θ̂ − θ0

s
√

cθ
∼ t(n − 2)

A 100(1 − α)% confidence interval for θ is thus

θ̂ ± tα
2
(n − 2)s

√
cθ



Inference about predicted mean

An important application of making inference about linear functions of model

parameters is to predict the mean of response variable at a new value of

independent variable. Suppose we have already fitted a linear model. We

want make inference about the mean of Y at x = x∗,

We estimate the mean of Y at x∗ by E(Y ∗) = β̂0 + β̂1x∗. Note here β̂0 + β̂1x∗

is a linear function of model parameters β̂0 and β̂1 where a0 = 1 and a1 = x∗.

Thus, using results from previous slides:

A 100(1 − α)%Confidence interval for E(Y ∗) = β0 + β1x∗ is

(β̂0 + β̂1x∗)± tα
2
(n − 2)s

√
1
n
+

(x∗ − x)2

Sxx



Inference about predicted mean

On the width of the confidence interval for E(Y ):

• The width is the narrowest at x = x ;

• The width decreases with Sxx , suggesting that spreading x out helps

improve the precision of predicting the mean.



Inference about predicted value of Y

In addition to making inferences about the mean of Y at x∗, can we make

prediction about the value Y at x∗, namely Y ∗?

Notice that Y ∗ is a random variable, not a parameter; predicting its value

therefore represents a departure from previous objective of making

inferences about model parameters.

In a linear model assuming normal error, Y ∗ is normally distributed with

mean β0 + β1x∗. It is thus reasonable to use β̂0 + β̂1x∗ as a predictor of Y ∗.



Inference about predicted value of Y

Using the same technique as deriving the t-test for a single parameter or

linear functions of parameters, we can show that A 100(1 − α)% prediction

band for Y ∗ is

β̂0 + β̂1x∗ ± tα
2
(n − 2)s

√
1 +

1
n
+

(x∗ − x)2

Sxx



Inference about predicted value of Y

The length of the prediction interval for an actual value of Y is longer than the

confidence interval for E(Y ) when both are determined at the same x∗.



Extending simple regression to multiple regression

To extend simple linear regression to multiple regression models, we need

matrix representation of linear model.

A linear model

yi = β0 + β1xi1 + β2xi2 + · · ·+ βk xik

can be written in the matrix form as Y = Xβ + ε, where

Y =


y1

y2

...

yn

 , X =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

...
...

1 xn1 xn2 · · · xnk

 , β =


β0

β1

...

βk

 , ε =


ε1

ε2

...

εn

 .



Fitting linear model by using matrices

Here, we briefly state how linear model is fit by using matrices. These results

simply extends properties of simple linear regression to multiple regressions.

Using matrix representation, the sum square of error (SSE) is

(Y − Xβ)T (Y − Xβ)

Taking derivative of SSE with respect to β and set it to zero, we obtain what

is often referred to as the normal equation

X T Xβ = X T Y

Solving the normal equation, the solution is

β̂ = (X T X)−X T Y

where (X T X)− is generalized inverse of X T X



Fitting linear model by using matrices

Example: We fit a simple linear regression y = β0 + β1x . We observed a

sequence of y as 0, 0, 1, 1, 3 and x as −2,−1, 0, 1, 2.

Using algebraic results for simple linear regression, we estimate the

regression parameters as

β̂1 =
Sxy

Sxx
=

∑5
i=1(xi − x)(yi − y)∑5

i=1(xi − x)2
= 0.7

β̂0 = y − β̂1x = 1

Next, we use matrix representation of the linear regression. We can see that

the matrix representation of the regression yield the same estimates.



Fitting linear model by using matrices

In matrix representation, the data are

Y =



0

0

1

1

3


, X =



1 −2

1 −1

1 0

1 1

1 2


It follows that

X T X =

[
5 0

0 10

]
, X T Y =

[
5

7

]
, (X T X)− =

[
1/5 0

0 1/10

]

Thus,

β̂ = (X T X)−X T Y =

[
1/5 0

0 1/10

][
5

7

]
=

[
1

0.7

]



Properties of least square estimators

In a multiple regression yi = β0 + β1xi1 + β2xi2 + · · ·+ βk xik , least square

estimator has the same properties as the simple linear regression, just

expressed in matrix form.

• Parameter estimates are unbiased E(β̂) = β;

• Var(βi) = ciiσ
2, where cii is the element in row i and column i of the

matrix (X T X)−;

• Cov(βi , βj) = cijσ
2 where cij is the element in row i and column j of the

matrix X T X−;

• An unbiased estimator of σ2 is s2 = SSE/(n − k − 1), where

SSE = (Y − X β̂T )T (Y − X β̂) = Y T Y − β̂T X T Y ;

• Each βi is normally distributed;

• (n − k − 1)s2/σ2 has a χ2(n − k − 1) distribution;

• All βi and s2 are independent.



Inferences in multiple linear regression

In simple linear regression, we use t-distribution to construct confidence

interval for parameters or linear functions of parameters. For example,

100(1 − α)% confidence interval for θ = a0β0 + a1β1

θ̂ ± tα
2
(n − 2)s

√
a2

0

∑
x2

i
n + a2

1 − 2a0a1x
Sxx

In multiple regression, we derive the confidence intervals in the same way,

just in matrix representation:

aTβ ± tα
2
(n − k − 1)s

√
aT (X T X)−a



Inferences in multiple linear regression

In a simple linear regression, a 100(1 − α)% prediction interval is constructed

from the t-distribution. At x∗, the prediction interval is

(β̂0 + β̂1x∗)± tα
2
(n − 2)s

√
1 +

1
n
+

(x∗ − x)2

Sxx

In multiple regression, prediction interval is derived the same way. The

prediction interval expressed in matrix form is

aTβ ± tα
2
(n − k − 1)s

√
1 + aT (X T X)−a

where aT =
[
1, x∗

1 , x
∗
2 , . . . , x

∗
k

]



Inferences in multiple linear regression

Hypotheses about the value of a parameter or a linear function of parameters

can be written generally as

Λβ = d

Example: In a linear regression y = β0 + β1x1 + β2x2, the hypothesis

H0 : β1 = 0 can be written in matrix form where

Λ =
[
0 1 0

]
, β =


β0

β1

β2

 , d = 0

H0 : β0 = 0 and β1 = β2 can be written in matrix form where

Λ =

[
1 0 0

0 1 −1

]
, β =


β0

β1

β2

 , d =

[
0

0

]
.



Inferences in multiple linear regression

In a simple linear regression, hypotheses concerning a single parameter or

linear function of parameters is tested using t-statistic, or equivalently,

F-statistics constructed from sum of squares.

(β̂i−βi0)
2

ciiσ
2 /1

(n−2)s2

σ2 /(n − 2)
=

1
σ2 SSH/1

1
σ2 SSE/(n − 2)

∼ F1,n−2

The same procedure can be extended to multiple linear regression:

SSH = (Λβ̂ − d)T (Λ(X T X)−ΛT )−(Λβ̂ − d)

SSE = Y T Y − β̂T X T Y
1
σ2 SSH/m

1
σ2 SSE/(n − k − 1)

∼ Fm,n−k−1

where m is the number of independent hypotheses.



Inferences in multiple linear regression

In general, hypotheses in linear regression models are tested using F

statistic. Since the F statistic is constructed from various sum of square, the

results of hypotheses testings in linear regressions are usually presented in a

so-called ANOVA table.

• SSH or SSE are usually labelled sum of squares;

• Sum of squares divided by the corresponding degrees of freedom is

mean squares;

• F-statistics is typically constructed from ratios of mean squares.



The analysis of variance

A common scenario we encounter in data analysis is comparing a response

variable under several treatments

• Comparing plant growth rate under three levels of fertilizations;

• Comparing soil respiration under ambient temperature and warming;

• Evaluating student performance under different teaching methods.

In these examples, we refer to the independent variable that defines the

groups as factors, and different values of the factor is called its levels. To

analyze the difference among group means, we typically use a method called

analysis of variance, or simply ANOVA.



The analysis of variance

To examine whether the means in each treatment are all the same or not, an

intuitive approach is to compare the variation among treatment means and

the variation within a treatment group.



One-way ANOVA

Suppose we have k groups of observations, each sampled from a normal

population with means µ1, µ2, . . . , µk and a common variance σ2. Each group

has nk observations. To test H0: µ1 = µ2 = · · · = µk , we compare variation

among group means and variation within a group.

Variation among group means, often referred to as SST or sum square of

treatments, is calculated as

SST =
k∑

i=1

ni(Yi· − Y )2

Variation within a group, which is referred to as sum square of errors or SSE,

is calculated as

SSE =
k∑

i=1

ni∑
j=1

(Yij − Yi·)
2



One-way ANOVA

The hypothesis H0: µ1 = µ2 = · · · = µk is tested by a F-statistic

F =
SST/(k − 1)
SSE/(n − k)

∼ Fk−1,n−k

Conventionally, the results of ANOVA are presented in an ANOVA table

Source df SS MS F

Treatments k − 1 SST MST = SST
k−1 F = MST

MSE

Error n − k SSE MSE = SSE
n−k

Total n − 1 TSS



Two-way ANOVA

We can consider the effects of more than one factor. Suppose we have two

factors A and B. They have a and b levels respectively. We assume that each

observation is N(µij , σ
2). This type of data typically allows us to examine

• The main effects of A and B;

• The interaction between A and B.

(A typical experiment set up for two-way ANOVA)



Two-way ANOVA

Two-way ANOVA allows us to identify interactions, which means that the

effect of one factor depends on the level of another factor.

(An illustration of interaction in two-way ANOVA.)



Two-way ANOVA

The main effect and interaction can be tested by comparing sum squares of

each factor and their interaction with the sum squares of error.

Let Yijk be the k th replicates at level i of factor A and level j of factor j .

Suppose there are a levels of factor A, b levels of factor B, and nij replicates

within each A and B treatment combination.

SSA =
a∑

i=1

b∑
j=1

nij∑
k=1

(Yi·· − Y )2

SSB =
a∑

i=1

b∑
j=1

nij∑
k=1

(Y·j· − Y )2

SSAB =
a∑

i=1

b∑
j=1

nij∑
k=1

(Yij· − Yi·· − Y·j· + Y )2

SSE =
a∑

i=1

b∑
j=1

nij∑
k=1

(Yijk − Yij·)
2



Two-way ANOVA

The results of two-way ANOVA can be presented in an ANOVA table.

Source df SS MS F

A a − 1 SSA MSA = SSA
a−1 F = MSA

MSE

B b − 1 SSB MSB = SSB
b−1 F = MSB

MSE

AB (a − 1)(b − 1) SSAB MSAB = SSAB
(a−1)(b−1) F = MSAB

MSE

Error n − ab SSE MSE = SSE
n−ab

Total n − 1 TSS



Two-way ANOVA

Example: An ecologists grew three varieties of oats under four nitrogen

fertilization levels. She measured the crop yield and used a two-way ANOVA

to analyze the effects of oats variety and nitrogen fertilization level. What

conclusions would you draw based on the results below?

Source Df SS MS F P-value

Variety 2 1786.4 893.2 1.7949 0.175

Nitrogen 3 20020.5 6673.5 13.41 8.367 × 10−7

Variety:Nitrogen 6 321.7 53.6 0.1078 0.9952

Error 60 29857.3 497.6



The analysis of variance

The intuitive approach we have introduced so far can be extended to cases

with more than two factors. In essence, ANOVA decomposes the total sum of

squares into sum of squares for each factor.



ANOVA as a linear model

ANOVA uses decomposition of sum of squares to compare means in groups

defined by factors. Similarly, we have seen that we use the F-statistics

constructed from sum of squares for hypothesis testing in linear models. This

similarity is not coincidence. In fact, ANOVA is a type of linear model.

Recall a linear model is defined as a model where the response variable is a

linear function of parameters, i.e.,

yi = β0 + β1xi1 + β2xi2 + · · ·+ βk xik + εi

ANOVA can be written as a linear model by defining x as a dummy or

indicator variable.



ANOVA as a linear model

A one-way ANOVA with k groups can be written as

yij = β1x1 + β2x2 + · · ·+ βk xk + εij , εij ∼ N(0, σ2)

Here, xi is an indicator variable where xi = 1 if the observation is in group i

and xi = 0 if the observation is not in group i .

A few comments on the model parameters:

• The model can be written more concisely as yij = βi , i = 1, 2, . . . , k ;

• There are k + 1 parameters in the model;

• The model can also be written in matrix form as Y = Xβ + ε.



ANOVA as a linear model

Example: We compare the biomass of plants grown under two nitrogen

levels and observed the following data:

N level Biomass

Low 12, 11, 10

High 20, 22, 21

Here, we can write the model as y = Xβ + ε where

y =



12

11

10

20

22

21


; X =



1 0

1 0

1 0

0 1

0 1

0 1


; β =

[
β1

β2

]
; ε =



ε11

ε12

ε13

ε21

ε22

ε23


.



ANOVA as a linear model

There are multiple ways to write the same linear model. The model in the

above example can also be written as as y = Xβ + ε where

y =



12

11

10

20

22

21


; X =



1 0

1 0

1 0

1 1

1 1

1 1


; β =

[
β1

β2

]
; ε =



ε11

ε12

ε13

ε21

ε22

ε23


.

Here, β1 is the mean of group 1 and β2 is the difference in group mean

between group 2 and group 1. This type of coding is referred to as the

reference level coding and is used in most statistical software.



ANOVA as a linear model

A two-way ANOVA model with interaction can be written as

yijk = αi + βj + γij + εijk

εijk ∼ N(0, σ2)

where αi is the effect of level i of factor A, βj is the effect of level j of factor B,

and γij is the interaction effect.

Comments on the two-way ANOVA model

• A two-way ANOVA do not necessarily has all terms as in the model

above. For example, if there are reasons to suggest that there are no

interactions, you do not need the interaction term.

• Hierarchical principle: if you include a interaction term, you should

usually include the main effects involved in that interaction.



ANOVA as a linear model

Since ANOVA is a linear model, the procedures for parameter estimation and

hypotheses testing we derived for linear models can be readily applied here.

• Parameters can be estimated as β̂ = (X T X)−X T Y ;

• Hypothesis can be tested by F-tests. The results are the same as the

ANOVA table we presented in previous slides.

SSH = (Λβ̂ − d)T (Λ(X T X)−ΛT )−(Λβ̂ − d)

SSE = Y T Y − β̂T X T Y
1
σ2 SSH/m

1
σ2 SSE/(n − k − 1)

∼ Fm,n−k−1



Hypothesis testing in ANOVA

In a one-way ANOVA, the factor has 3 levels and 3 replicates in each group.

Using reference level coding, how do you write the model in matrix form?

y =



y11

y12

y13

y21

y22

y23

y31

y32

y33



; X =



1 0 0

1 0 0

1 0 0

1 1 0

1 1 0

1 1 0

1 0 1

1 0 1

1 0 1



; β =


β1

β2

β3

 .



Hypothesis testing in ANOVA

How do you test the hypothesis that the factor has no effects?

If the factor has no effects, the group means are equal. Therefore,

H0 : β2 = 0 and β3 = 0

HA : β2 ̸= 0 or β3 ̸= 0.

In matrix form, this hypothesis is written as Λβ = 0, where

Λ =

[
0 1 0

0 0 1

]
; β =


β1

β2

β3





Summary

Although comprehending the theory of linear model is not feasible in a single

lecture, understanding the following principles helps us use it correctly in

practice:

• Least squares works the same way for linear regression and ANOVA,

providing a unifying framework to understand these methods;

• Matrix representation of linear model helps understand the meaning of

parameters, which is critical for subsequent inference;

• Least squares coupled with normally distributed iid error is the

theoretical foundation for statistical inference;

• In linear models, statistical inference are typically done with F-test, which

can be presented in the form a an ANOVA table.


