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What is a mixed-effects model?

Fixed effects are parameters associated with an entire population or with

certain repeatable levels of experimental factors.

Random effects are parameters associated with individual experimental

units drawn at random from a population.

A linear model with both fixed effects and random effects is called a

mixed-effects model.



A motivating example

Example: An experiment measured the time it took for certain type of

ultrasonic wave to travel the length of rail. They chose six rails at random and

tested each rail three times. They are interested in estimating the average

time for a “typical” rail, the variation among rails and within a rail.



A motivating example

We may fit a linear model with rail identity as a categorical predictor. That is

yij = µ+ βi + εij

where i indexes the rail identity and j indexes the replicates for each rail. But

this approach has several drawbacks:

• It does not account for correlation within a rail;

• It does not estimate the variation among rails and within a rail;

• Number of parameters increase linearly if we test more rails.



A motivating example

To address these shortcomings, we replace the fixed rail effect βi with a

random effect bi . The model becomes

yij = µ+ bi + εij

where both bi and εij are assumed to follow normal distributions with mean 0

and unknown variances. This model has several advantages:

• Now the interpretation of µ changes from the mean over the 6 rails in

this experiment to the mean over the population of all rails from which

the 6 rails were sampled;

• We can estimate the rail to rail variability σ2
b ;

• The number of parameters no longer increases with the number of rails

tested in the experiment.



Formulating mixed-effect models

In general, a linear mixed effects model express the response as the sum of

fixed effects, random effects, and random errors. It can be generally written

as

y = β0 + β1X1 + . . .+ b0 + b1X1 + . . .+ ε

Or more briefly in matrix form as

Y = Xβ + Zb + ε

Here, both b and ε are assumed to follow normal distributions with mean of 0.



Mixed-effect models

A few comments on fixed and random effects:

• Random effects in principle means that the it is a random sample from

the population of interest. In practice, whether we treat a variable as

fixed or random effects primarily depends on the scope of inferences.

• Although random errors are typically assumed to follow iid normal

distributions, we do not necessarily make such an assumption for

random effects. In fact, random effects can assume complex patterns of

variance-covariance structures.

• In mixed effects models, the parameters we estimates are the values of

fixed effect parameters and the variance of the random effects. The

values for the random effects can be predicted but it is not regarded as a

parameter in the models.



Fitting mixed-effect model

Fitting mixed-effect model is generally done by the method of maximum

likelihood. It typically consists of the following step:

• Treat parameter associated with random effects as known and maximize

the likelihood function with respect to the fixed effects;

• Plug in the estimator of fixed effects back into the likelihood, which yield

a likelihood function only as a function of parameters associated with the

random effects. This is called profile likelihood. Maximize this function to

obtain the estimates for random effects parameters;

• Use the estimates of random effects parameters to obtain parameter

estimates for all fixed effects.



Restricted maximum likelihood estimates

Maximum likelihood estimation of variances produced biased estimators.

This primarily arises from the fact that maximum likelihood estimators ignore

the fact that parameter in the mean have been estimated.

Restricted maximum likelihood (REML) remedies this issues by applying the

likelihood method to error contrasts instead of the original data.

• REML is a method of estimating the variance parameters, not all

parameters in the model;

• REML cannot be used for likelihood ratio test. For example, when using

AIC to compare model fits, model should not be fit by REML.



Inferences in linear mixed-effects model

Because mixed models are fit using maximum likelihood, standard

likelihood-based inference techniques for fixed effects are available, such as

Wald test or likelihood ratio test.

However, these likelihood based tests relies on asymptotic properties of

maximum likelihood estimates. Within small sample size, these tests are

known to be anti-conservative, i.e., they produce too small p-values and give

false significance.

In linear mixed model, inferences are usually done using:

• parametric bootstrapping based inference;

• F-tests with degrees of freedom adjustments.



Inferences in linear mixed-effects model

While it is rarely of interest to perform hypothesis tests on the random effects,

it may be a goal of data analysis in specific cases.

Likelihood based inference, such as likelihood ratio test, can be used for

testing random effects. But note that these tests are only approximately

correct when testing if the variance of a random effect is zero. This is

because variance can only be positive and we are testing the parameter near

its boundary of possible range.



Choosing proper model structure

How do I choose a proper model structure?

• Specify a saturated, or “full” model for the fixed effect structure, and then

try to identify a parsimonious but adequate variance-covariance

structure through the specification of random effects using AIC or other

model comparison metric. Here, model should be fit with ML.

• If reduction of the fixed effect structure is desired, using F-tests with

degrees of freedom adjustment, rather than likelihood based method.

• Refit the model using REML and use it as the basis for all final

inferences.



Choosing proper model structure

A few comments on choosing fixed effects in the model:

• Using F-tests to select fixed effects runs the risk of type II error. That is,

if we remove a fixed effect when it is not significant, we essentially

accept the null hypothesis.

• If we analyze data from a designed experiment, the fixed effect should

reflect the purpose of that design. In this case, we should not do model

selections on fixed effects.

• If our goal is to build a parsimonious model for prediction, then using

F-tests for model selection is appropriate.


